
- •Билет№1. Случайные события. Элементарные события. Пространство элементарных событий.
- •Билет №2. Вероятность события. Формула классической вероятности.
- •Билет№3. Несовместные события. Теорема сложения для несовместных событий.
- •Билет№4.Независимые события. Теорема произведения для независимых событий.
- •Билет№5. Условная вероятность. Теорема умножений вероятностей зависимых событий:
- •Билет№6. Совместные события. Теорема сложения совместных событий:
- •Билет №7. Вероятность появления хотя бы одного из n независимых в совокупности событий.
- •Билет№8. Геометрическая вероятность события
- •Билет №9. Статистическая вероятность.
- •Билет №10. Принцип практичної вірогідності та практичної неможливості появи випадкових подій в окремому віпробуванні.
- •Билет№11.Формула полной вероятности.
- •Билет №12. Формула Байеса
- •Билет №13. Случайная величина (дискретная и случайная). Примеры.
- •Билет №14. Распределение дискретной случайной величины.
- •Билет №15. Полигон (многоугольник) распределения.
- •Билет №16. Числовые характеристики дискретных случайных величин.
- •Билет №17. Незалежні та залежні дискретні випадкові величини.
- •Билет №18. Математическое ожидание его свойства. Вероятностный смысл
- •Билет №19. Дисперсия. Её свойства. Средне квадратичное отклонение.
- •Билет №20. Распределение Бернулли. Его численные характеристики. Мода.
- •№21. Твірна функція. (Производящая функция).
- •№22. Розподіл Лапласа. Диференціальна теорема Лапласа.
- •№23. Дифференціальна функція Лапласа та ії властивості.
- •Билет№24. Интегральная функция Лапласа:
- •Билет №25.Интегральная теорема Лапласа
- •№26. Чисельні характеристики розподілу Лапласа. Численные характеристики распределения Лапласа:
- •27. Различные формы интегральной теоремы Лапласа.
- •28. Взаимонезависимые случайные величины, имеющие одинаковое распределение. Численные характеристики их среднего арифметического.
- •29. Распределение Пуассона. Область использования.
- •30. Численные характеристики распределения Пуассона. Мода.
- •31. Простейший (пуассоновский) поток событий.
- •32. Непрерывная случайная величина. Примеры.
- •33. Интегральная функция распределения. Ее свойства.
- •№34. Кумулята. Ее свойства.
- •35. Дифференциальная функция распределения (плотность вероятности), ее свойства.
- •36. Численные характеристики непрерывной случайной величины.
- •37. Начальный и центральный моменты случайной величины.
- •38. Равномерное распределение, его использование. Численные характеристики.
- •39. Показательное распределение, его применение. Численные характеристики.
- •40. Нормальный закон распределения (закон Гаусса).
- •41. Влияние параметров нормального закона на форму кривой Гаусса.
- •№42. Центрированная и нормированная нормальная случайная величина. Ее численные характеристики, дифференциальная и интегральная функции распределения.
- •43. Вероятность отклонения случайной величины, имеющей нормальное распределение, от матожидания. Правило 3 сигма.
- •44. Асимметрия, эксцесс.
- •45. Неравенство Чебышева.
- •46. Теорема Чебышева (закон больших чисел в форме Чебышева).
- •№47. Теорема Бернулі (закон великих чисел у формі Бернулі).
- •48. Теорема Ляпунова (закон больших чисел в форме Ляпунова).
- •49. Случайный марковский процесс. Матрица перехода.
- •50. Уравнение Маркова.
- •51. Двумерная дискретная случайная величина, ее распределение.
- •№52. Чисельні характеристики двомірної випадкової величини.
- •№53. Умовний розподіл двовимірної випадкової величини та його чисельні характеристики.
- •№54. Двовимірна неперервна випадкова величина. Інтегральна функція розподілу, її властивості.
- •55. Двумерные непрерывные случайные величины. Интегральная функция распределения, её свойства.
- •№56. Звязок між диференціальною і інтегральною функціями розподілу.
- •№57. Звязок між інтегральною і диференціальною функціями розподілу.
- •58. Вероятность попадания в полосу и прямоугольник.
- •№59. Звязок між інтегральною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№60. Звязок між диференціальною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№61. Чисельні характеристики двовимірної неперервної випадкової величини.
- •№62. Умовне матиматичне сподівання двовимірної неперервної випадкової величини.
- •№63. Незалежні та залежні компоненти двовимірної дискретної випадкової випадкової величини.
- •№64. Незалежні та залежні компоненти двовимірної неперервної випадкової випадкової величини.
- •63(105) Корреляционный момент. Его свойства
- •64(106). Коэффициент корреляции и его свойства
- •65. Коррелированные и некоррелированные случайные величины.
- •№66. Двовимірна нормальна випадкова величина, її диференціальна функція розподілу.
- •№67. Умовні диференціальні функції розподілу компонент двовимірної нормальної випадкової величини.
- •68. Условное матожидание и условное среднеквадратичное отклонение.
- •№70. Генеральна сукупність. Її чисельні характеристики.
- •71. Выборка. Репрезентативность выборки.
- •№72. Чисельні характеристики вибірки. Їх звязок з чисельними характеристиками генеральної сукупності.
- •73. Точечные оценки выборки. Её свойства: несмещенность , состоятельность, эффективность.
- •74. Оценка математического ожидания.
- •№75. Оцінка дисперсії. Зміщенність цієї оцінки. Виправлена дисперсія.
- •№76. Інтервальні оцінки. Довірчий інтервал. Точність та надійність оцінки.
- •№77. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення відоме.
- •№78. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення невідоме.
- •№79. Доверительный интервал на неизвестное мат ожидание нормальной совокупности. Среднее квадратическое отклонение неизвестное. Объем выборки малый. Использование распределения Стьюдента.
- •№80. Минимальный объем выборки, который обеспечивает заданную точность и надежность оценки мат. Ожидания.
- •№81. Группировка эмпирических данных при их обработке. Выбор шага.
- •№82. Гістограма відносних часток досліджуваної ознаки. Кумулята.
- •№83. Знаходження чисельних характеристик за допомогою умовної варіанти.
- •№84. Статистические гипотезы. Нулевая и конкурирующая гипотезы. Односторонняя и двусторонняя критические области. Ошибки первого и второго рода.
- •№85. Критерій Пірсона. Знаходження критичних значень при перевірці гіпотези про погодження емпіричних та теоретичних частот. Баланс частот.
- •№86. Корреляційний звязок. Лінійна парна регресія. Метод найменших квадратів.
- •№87. Построение линейной парной регрессии. Центр корелляции. Экономическое содержание коэффициентов регрессии.
- •№88. Спряжена лінія регресії. Її розташування по відношенню до прямої лінії регресії.
- •№89. Вибірковий коефіцієнт корреляції. Його властивості.
- •№90. Дисперсія помилок та дисперсія, зумовлена лінійною парною регресією. Коефіцієнт детермінації. Його властивості.
- •№91 Дисперсійний аналіз вкладу дисперсії помилок та дисперсії, зумовленою регресією у повну дисперсію результативної ознаки.
- •№92. Значимість лінійного корреляційного звязкуза критерієм Фішера-Снедекора.
- •№94. Міжгрупова та внутрішньогрупова дисперсії.
- •№95. Індекс детермінації та його властивості. Кореляційне відношення.
- •№98. Критерий Стьюдента значимости коэффициента корелляции линейной парной регрессии.
- •№99. Довірча полоса на пряму лінію регресії.
- •№101. Лінійна множинна регрессія. Мнк. Система нормальних рівнянь.
- •№102. Дисперсія помилок. Коефіцієнт детермінації.
- •№104. Критерій Фішера значності множинної лінійної моделі в цілому.
Билет №20. Распределение Бернулли. Его численные характеристики. Мода.
Допустим, что событие А наступает в каждом испытании с вероятностью Р(А)=р. Определим вероятность Рт,п того, что в результате п испытаний событие А наступило ровно т раз.
Эту вероятность в принципе можно посчитать, используя теоремы сложения и умножения вероятностей, как это делалось в рассмотренных выше примерах. Однако при достаточно большом количестве испытаний это приводит к очень большим вычислениям. Таким образом, возникает необходимость разработать общий подход к решению поставленной задачи. Этот подход реализован в формуле Бернулли.
Пусть в результате
п
независимых испытаний, проведенных в
одинаковых условиях, событие А наступает
с вероятностью Р(А)
= р, а
противоположное ему событие
с вероятностью
.
Обозначим Ai
– наступление события А в испытании с
номером i.
Т.к. условия проведения опытов одинаковые,
то эти вероятности равны.
Если в результате п опытов событие А наступает ровно т раз, то остальные п-т раз это событие не наступает. Событие А может появиться т раз в п испытаниях в различных комбинациях, число которых равно количеству сочетаний из п элементов по т. Это количество сочетаний находится по формуле:
Вероятность каждой
комбинации равна произведению
вероятностей:
Применяя теорему сложения вероятностей несовместных событий, получаем формулу Бернулли:
Формула Бернулли важна тем, что справедлива для любого количества независимых испытаний, т.е. того самого случая, в котором наиболее четко проявляются законы теории вероятностей.
Мода M0 - возможное значение xi СВ X с максимальной вероятностью
Пример. По цели производится 5 выстрелов. Вероятность попадания для каждого выстрела равна 0,4. Найти вероятность того, что в цель попали не менее трех раз.
Вероятность не менее трех попаданий складывается из вероятности пяти попаданий, четырех попаданий и трех попаданий.
Т.к. выстрелы независимы, то можно применить формулу Бернулли вероятности того, что в т испытаниях событие в вероятностью р наступает ровно п раз.
В случае пяти
попаданий из пяти возможных:
Четыре попадания
из пяти выстрелов:
Три попадания из
пяти:
Окончательно,
получаем вероятность не менее трех
попаданий из пяти выстрелов:
.
№21. Твірна функція. (Производящая функция).
Пусть происходит (либо не происходит) событие А (Ā). Р(А) = р1, Р(А) = р2, Р(А) = рn. Р(Ā) = q1, Р(Ā) = q2, Р(Ā) = qn. Производящая функция (x) = (р1z + q1)(р2z + q2)… (рnz + qn) = p1p2z2 + (p1q2 + p2q1)z + q1q2.
№22. Розподіл Лапласа. Диференціальна теорема Лапласа.
Если
вероятность
р
появления события А
в каждом из n
независимых испытаний постоянная, а
число испытаний велико, то вероятность
того, что в этих испытаниях событие А
произойдет m
раз, вычисляется по формуле
Лапласа
(локальной формуле Лапласа): Pn(m)
,
где x
=
-
отклонение случайной величины Х от её
математического ожидания.
№23. Дифференціальна функція Лапласа та ії властивості.
Дифференциальная
функция Лапласа
имеет вид: х
=
е
,
где x
=
-
отклонение случайной величины Х от её
математического ожидания. Таблицу
значений функции х
можно найти в учебниках теории
вероятностей, причем только для
дополненных значений Х, т.к. х
- парная функция, т.е. -х
= х.
Для значений х
4 следует
считать, что х
0. Свойства
дифференциальной функции Лапласа:
1) х0.
2) х () – четная функция.
3)
=
=
0 – горизонтальная асимптота.
4).
х
=
е
(-х);
откуда 0
= 0,3989, 1
= 0,2420, 4
= 0,0001 – при построении получается кривая
Гаусса.
5)
х
=
(е
(-х)·х
+ е
1).