
- •Билет№1. Случайные события. Элементарные события. Пространство элементарных событий.
- •Билет №2. Вероятность события. Формула классической вероятности.
- •Билет№3. Несовместные события. Теорема сложения для несовместных событий.
- •Билет№4.Независимые события. Теорема произведения для независимых событий.
- •Билет№5. Условная вероятность. Теорема умножений вероятностей зависимых событий:
- •Билет№6. Совместные события. Теорема сложения совместных событий:
- •Билет №7. Вероятность появления хотя бы одного из n независимых в совокупности событий.
- •Билет№8. Геометрическая вероятность события
- •Билет №9. Статистическая вероятность.
- •Билет №10. Принцип практичної вірогідності та практичної неможливості появи випадкових подій в окремому віпробуванні.
- •Билет№11.Формула полной вероятности.
- •Билет №12. Формула Байеса
- •Билет №13. Случайная величина (дискретная и случайная). Примеры.
- •Билет №14. Распределение дискретной случайной величины.
- •Билет №15. Полигон (многоугольник) распределения.
- •Билет №16. Числовые характеристики дискретных случайных величин.
- •Билет №17. Незалежні та залежні дискретні випадкові величини.
- •Билет №18. Математическое ожидание его свойства. Вероятностный смысл
- •Билет №19. Дисперсия. Её свойства. Средне квадратичное отклонение.
- •Билет №20. Распределение Бернулли. Его численные характеристики. Мода.
- •№21. Твірна функція. (Производящая функция).
- •№22. Розподіл Лапласа. Диференціальна теорема Лапласа.
- •№23. Дифференціальна функція Лапласа та ії властивості.
- •Билет№24. Интегральная функция Лапласа:
- •Билет №25.Интегральная теорема Лапласа
- •№26. Чисельні характеристики розподілу Лапласа. Численные характеристики распределения Лапласа:
- •27. Различные формы интегральной теоремы Лапласа.
- •28. Взаимонезависимые случайные величины, имеющие одинаковое распределение. Численные характеристики их среднего арифметического.
- •29. Распределение Пуассона. Область использования.
- •30. Численные характеристики распределения Пуассона. Мода.
- •31. Простейший (пуассоновский) поток событий.
- •32. Непрерывная случайная величина. Примеры.
- •33. Интегральная функция распределения. Ее свойства.
- •№34. Кумулята. Ее свойства.
- •35. Дифференциальная функция распределения (плотность вероятности), ее свойства.
- •36. Численные характеристики непрерывной случайной величины.
- •37. Начальный и центральный моменты случайной величины.
- •38. Равномерное распределение, его использование. Численные характеристики.
- •39. Показательное распределение, его применение. Численные характеристики.
- •40. Нормальный закон распределения (закон Гаусса).
- •41. Влияние параметров нормального закона на форму кривой Гаусса.
- •№42. Центрированная и нормированная нормальная случайная величина. Ее численные характеристики, дифференциальная и интегральная функции распределения.
- •43. Вероятность отклонения случайной величины, имеющей нормальное распределение, от матожидания. Правило 3 сигма.
- •44. Асимметрия, эксцесс.
- •45. Неравенство Чебышева.
- •46. Теорема Чебышева (закон больших чисел в форме Чебышева).
- •№47. Теорема Бернулі (закон великих чисел у формі Бернулі).
- •48. Теорема Ляпунова (закон больших чисел в форме Ляпунова).
- •49. Случайный марковский процесс. Матрица перехода.
- •50. Уравнение Маркова.
- •51. Двумерная дискретная случайная величина, ее распределение.
- •№52. Чисельні характеристики двомірної випадкової величини.
- •№53. Умовний розподіл двовимірної випадкової величини та його чисельні характеристики.
- •№54. Двовимірна неперервна випадкова величина. Інтегральна функція розподілу, її властивості.
- •55. Двумерные непрерывные случайные величины. Интегральная функция распределения, её свойства.
- •№56. Звязок між диференціальною і інтегральною функціями розподілу.
- •№57. Звязок між інтегральною і диференціальною функціями розподілу.
- •58. Вероятность попадания в полосу и прямоугольник.
- •№59. Звязок між інтегральною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№60. Звязок між диференціальною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№61. Чисельні характеристики двовимірної неперервної випадкової величини.
- •№62. Умовне матиматичне сподівання двовимірної неперервної випадкової величини.
- •№63. Незалежні та залежні компоненти двовимірної дискретної випадкової випадкової величини.
- •№64. Незалежні та залежні компоненти двовимірної неперервної випадкової випадкової величини.
- •63(105) Корреляционный момент. Его свойства
- •64(106). Коэффициент корреляции и его свойства
- •65. Коррелированные и некоррелированные случайные величины.
- •№66. Двовимірна нормальна випадкова величина, її диференціальна функція розподілу.
- •№67. Умовні диференціальні функції розподілу компонент двовимірної нормальної випадкової величини.
- •68. Условное матожидание и условное среднеквадратичное отклонение.
- •№70. Генеральна сукупність. Її чисельні характеристики.
- •71. Выборка. Репрезентативность выборки.
- •№72. Чисельні характеристики вибірки. Їх звязок з чисельними характеристиками генеральної сукупності.
- •73. Точечные оценки выборки. Её свойства: несмещенность , состоятельность, эффективность.
- •74. Оценка математического ожидания.
- •№75. Оцінка дисперсії. Зміщенність цієї оцінки. Виправлена дисперсія.
- •№76. Інтервальні оцінки. Довірчий інтервал. Точність та надійність оцінки.
- •№77. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення відоме.
- •№78. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення невідоме.
- •№79. Доверительный интервал на неизвестное мат ожидание нормальной совокупности. Среднее квадратическое отклонение неизвестное. Объем выборки малый. Использование распределения Стьюдента.
- •№80. Минимальный объем выборки, который обеспечивает заданную точность и надежность оценки мат. Ожидания.
- •№81. Группировка эмпирических данных при их обработке. Выбор шага.
- •№82. Гістограма відносних часток досліджуваної ознаки. Кумулята.
- •№83. Знаходження чисельних характеристик за допомогою умовної варіанти.
- •№84. Статистические гипотезы. Нулевая и конкурирующая гипотезы. Односторонняя и двусторонняя критические области. Ошибки первого и второго рода.
- •№85. Критерій Пірсона. Знаходження критичних значень при перевірці гіпотези про погодження емпіричних та теоретичних частот. Баланс частот.
- •№86. Корреляційний звязок. Лінійна парна регресія. Метод найменших квадратів.
- •№87. Построение линейной парной регрессии. Центр корелляции. Экономическое содержание коэффициентов регрессии.
- •№88. Спряжена лінія регресії. Її розташування по відношенню до прямої лінії регресії.
- •№89. Вибірковий коефіцієнт корреляції. Його властивості.
- •№90. Дисперсія помилок та дисперсія, зумовлена лінійною парною регресією. Коефіцієнт детермінації. Його властивості.
- •№91 Дисперсійний аналіз вкладу дисперсії помилок та дисперсії, зумовленою регресією у повну дисперсію результативної ознаки.
- •№92. Значимість лінійного корреляційного звязкуза критерієм Фішера-Снедекора.
- •№94. Міжгрупова та внутрішньогрупова дисперсії.
- •№95. Індекс детермінації та його властивості. Кореляційне відношення.
- •№98. Критерий Стьюдента значимости коэффициента корелляции линейной парной регрессии.
- •№99. Довірча полоса на пряму лінію регресії.
- •№101. Лінійна множинна регрессія. Мнк. Система нормальних рівнянь.
- •№102. Дисперсія помилок. Коефіцієнт детермінації.
- •№104. Критерій Фішера значності множинної лінійної моделі в цілому.
№47. Теорема Бернулі (закон великих чисел у формі Бернулі).
Теорема.
Якщо імовірність події в n
дослідах стала і дорівнює р,
то ймовірність відхилення відносної
чатоти від цієї ймовірності на величину
не більшу за
як завгодно близька до одиниці при
достатньо великому n:
при
,
або
.
Доведення.
Нехай
–
випадкова величина, яка приймає значення
1, якщо при досліді настає певна подія,
і значення 0 – якщо подія не настає,
тобто:
.
Тоді маємо ряд розподілу
хi |
1 |
0 |
рi |
p |
q |
Де
.
Оскільки випадкові величини Хi мають обмежену дисперсію, то можна можна використати теорему Чебишова:
=1.
Дріб
дорівнює відносній частоті. Дійсно,
кожна з величин Х1,
Х2,…,Хn
з появою події в досліді приймає значення
1. звідси сума Х1+Х2+…+Хn
дорівнює m
– кількості появ події в n
дослідах. М(Х1)+М(Х2)+…+М(Хn)=np.
Таким чином
.
Теорема доведена.
48. Теорема Ляпунова (закон больших чисел в форме Ляпунова).
Доповнює закон великих чисел. (Закон великих чисел обєднує кілька теорем, у кожній з яких за певних умов виявляється факт наближення середніх характеристик під час проведення великої кількості експериментів до певних невипадкових, сталих величин)..
Теорема: Если случайная величина Х представляет собой сумму очень большого числа взаимно независимых случайных величин, влияние каждой из которых на всю сумму ничтожно мало, то Х имеет распределение, близкое к нормальному.
На практике для большинства случайных величин выполняются условия теоремы Ляпунова.
Условие Ляпунова при некотором
Для нормированных величин условие Ляпунова:
Условие Ляпунова при 1
Условие Ляпунова при 2
Основні висновки із закону великих чисел: при достатньо великій кількості дослідів можна вважати, що випадкова величина має розподіл близький до нормального (висновок теореми Ляпунова), при цьому за матиматичне сподівання випадкової величини можна брати середнє вибіркове (теорема Чебишова), а за ймовірність події – відносну частоту (теорема Бернулі).
49. Случайный марковский процесс. Матрица перехода.
марковский процесс – это случайный процесс, обладающий марковским свойством.
марковским свойством называется свойство, состоящее в том, что условная плотность зависит только от значения процесса в последний момент времени, т. е. для всех n2.
Марковский процесс называется однородным, если
PT1,T2(x,A)=P(t2-t1,x,A).
Однородной называется цепь Маркова, если условная вероятность pij перехода системы из состояния i в состояние j не зависит от номера испытания. Вероятность pij называется переходной вероятностью.
Полная вероятностная картина возможных изменений, осуществляющихся при переходе от одного испытания к следующему, задается матрицей, составленной из вероятностей перехода, которая называется матрицей перехода.
1. Элементы матрицы должны быть неотрицательными числами, т.е. при всех i и j
0 pij 1
2. Сумма элементов каждой строки матрицы перехода равна единице.
Матрицы, суммы элементов всех строк которых равны единице, называются стохастическими. Если при некотором п все элементы матрицы Рп не равны нулю, то такая матрица переходов называется регулярной. Регулярные матрицы переходов задают цепь Маркова, в которой каждое состояние может быть достигнуто через п шагов из любого состояния. Такие цепи Маркова также называются регулярными.
На основе матрицы перехода системы можно построить так называемый граф состояний системы, его еще называют размеченный граф состояний. Это удобно для наглядного представления цепи.
Равенство
Маркова:
,
где
–
шагов.
,
.
.
,
.