
- •Билет№1. Случайные события. Элементарные события. Пространство элементарных событий.
- •Билет №2. Вероятность события. Формула классической вероятности.
- •Билет№3. Несовместные события. Теорема сложения для несовместных событий.
- •Билет№4.Независимые события. Теорема произведения для независимых событий.
- •Билет№5. Условная вероятность. Теорема умножений вероятностей зависимых событий:
- •Билет№6. Совместные события. Теорема сложения совместных событий:
- •Билет №7. Вероятность появления хотя бы одного из n независимых в совокупности событий.
- •Билет№8. Геометрическая вероятность события
- •Билет №9. Статистическая вероятность.
- •Билет №10. Принцип практичної вірогідності та практичної неможливості появи випадкових подій в окремому віпробуванні.
- •Билет№11.Формула полной вероятности.
- •Билет №12. Формула Байеса
- •Билет №13. Случайная величина (дискретная и случайная). Примеры.
- •Билет №14. Распределение дискретной случайной величины.
- •Билет №15. Полигон (многоугольник) распределения.
- •Билет №16. Числовые характеристики дискретных случайных величин.
- •Билет №17. Незалежні та залежні дискретні випадкові величини.
- •Билет №18. Математическое ожидание его свойства. Вероятностный смысл
- •Билет №19. Дисперсия. Её свойства. Средне квадратичное отклонение.
- •Билет №20. Распределение Бернулли. Его численные характеристики. Мода.
- •№21. Твірна функція. (Производящая функция).
- •№22. Розподіл Лапласа. Диференціальна теорема Лапласа.
- •№23. Дифференціальна функція Лапласа та ії властивості.
- •Билет№24. Интегральная функция Лапласа:
- •Билет №25.Интегральная теорема Лапласа
- •№26. Чисельні характеристики розподілу Лапласа. Численные характеристики распределения Лапласа:
- •27. Различные формы интегральной теоремы Лапласа.
- •28. Взаимонезависимые случайные величины, имеющие одинаковое распределение. Численные характеристики их среднего арифметического.
- •29. Распределение Пуассона. Область использования.
- •30. Численные характеристики распределения Пуассона. Мода.
- •31. Простейший (пуассоновский) поток событий.
- •32. Непрерывная случайная величина. Примеры.
- •33. Интегральная функция распределения. Ее свойства.
- •№34. Кумулята. Ее свойства.
- •35. Дифференциальная функция распределения (плотность вероятности), ее свойства.
- •36. Численные характеристики непрерывной случайной величины.
- •37. Начальный и центральный моменты случайной величины.
- •38. Равномерное распределение, его использование. Численные характеристики.
- •39. Показательное распределение, его применение. Численные характеристики.
- •40. Нормальный закон распределения (закон Гаусса).
- •41. Влияние параметров нормального закона на форму кривой Гаусса.
- •№42. Центрированная и нормированная нормальная случайная величина. Ее численные характеристики, дифференциальная и интегральная функции распределения.
- •43. Вероятность отклонения случайной величины, имеющей нормальное распределение, от матожидания. Правило 3 сигма.
- •44. Асимметрия, эксцесс.
- •45. Неравенство Чебышева.
- •46. Теорема Чебышева (закон больших чисел в форме Чебышева).
- •№47. Теорема Бернулі (закон великих чисел у формі Бернулі).
- •48. Теорема Ляпунова (закон больших чисел в форме Ляпунова).
- •49. Случайный марковский процесс. Матрица перехода.
- •50. Уравнение Маркова.
- •51. Двумерная дискретная случайная величина, ее распределение.
- •№52. Чисельні характеристики двомірної випадкової величини.
- •№53. Умовний розподіл двовимірної випадкової величини та його чисельні характеристики.
- •№54. Двовимірна неперервна випадкова величина. Інтегральна функція розподілу, її властивості.
- •55. Двумерные непрерывные случайные величины. Интегральная функция распределения, её свойства.
- •№56. Звязок між диференціальною і інтегральною функціями розподілу.
- •№57. Звязок між інтегральною і диференціальною функціями розподілу.
- •58. Вероятность попадания в полосу и прямоугольник.
- •№59. Звязок між інтегральною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№60. Звязок між диференціальною функцією двовимірної неперервної випадкової величини та її компонентами.
- •№61. Чисельні характеристики двовимірної неперервної випадкової величини.
- •№62. Умовне матиматичне сподівання двовимірної неперервної випадкової величини.
- •№63. Незалежні та залежні компоненти двовимірної дискретної випадкової випадкової величини.
- •№64. Незалежні та залежні компоненти двовимірної неперервної випадкової випадкової величини.
- •63(105) Корреляционный момент. Его свойства
- •64(106). Коэффициент корреляции и его свойства
- •65. Коррелированные и некоррелированные случайные величины.
- •№66. Двовимірна нормальна випадкова величина, її диференціальна функція розподілу.
- •№67. Умовні диференціальні функції розподілу компонент двовимірної нормальної випадкової величини.
- •68. Условное матожидание и условное среднеквадратичное отклонение.
- •№70. Генеральна сукупність. Її чисельні характеристики.
- •71. Выборка. Репрезентативность выборки.
- •№72. Чисельні характеристики вибірки. Їх звязок з чисельними характеристиками генеральної сукупності.
- •73. Точечные оценки выборки. Её свойства: несмещенность , состоятельность, эффективность.
- •74. Оценка математического ожидания.
- •№75. Оцінка дисперсії. Зміщенність цієї оцінки. Виправлена дисперсія.
- •№76. Інтервальні оцінки. Довірчий інтервал. Точність та надійність оцінки.
- •№77. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення відоме.
- •№78. Довірчий інтервал на невідоме математичне сподівання нормальної сукупності. Середнє квадратичне відхилення невідоме.
- •№79. Доверительный интервал на неизвестное мат ожидание нормальной совокупности. Среднее квадратическое отклонение неизвестное. Объем выборки малый. Использование распределения Стьюдента.
- •№80. Минимальный объем выборки, который обеспечивает заданную точность и надежность оценки мат. Ожидания.
- •№81. Группировка эмпирических данных при их обработке. Выбор шага.
- •№82. Гістограма відносних часток досліджуваної ознаки. Кумулята.
- •№83. Знаходження чисельних характеристик за допомогою умовної варіанти.
- •№84. Статистические гипотезы. Нулевая и конкурирующая гипотезы. Односторонняя и двусторонняя критические области. Ошибки первого и второго рода.
- •№85. Критерій Пірсона. Знаходження критичних значень при перевірці гіпотези про погодження емпіричних та теоретичних частот. Баланс частот.
- •№86. Корреляційний звязок. Лінійна парна регресія. Метод найменших квадратів.
- •№87. Построение линейной парной регрессии. Центр корелляции. Экономическое содержание коэффициентов регрессии.
- •№88. Спряжена лінія регресії. Її розташування по відношенню до прямої лінії регресії.
- •№89. Вибірковий коефіцієнт корреляції. Його властивості.
- •№90. Дисперсія помилок та дисперсія, зумовлена лінійною парною регресією. Коефіцієнт детермінації. Його властивості.
- •№91 Дисперсійний аналіз вкладу дисперсії помилок та дисперсії, зумовленою регресією у повну дисперсію результативної ознаки.
- •№92. Значимість лінійного корреляційного звязкуза критерієм Фішера-Снедекора.
- •№94. Міжгрупова та внутрішньогрупова дисперсії.
- •№95. Індекс детермінації та його властивості. Кореляційне відношення.
- •№98. Критерий Стьюдента значимости коэффициента корелляции линейной парной регрессии.
- •№99. Довірча полоса на пряму лінію регресії.
- •№101. Лінійна множинна регрессія. Мнк. Система нормальних рівнянь.
- •№102. Дисперсія помилок. Коефіцієнт детермінації.
- •№104. Критерій Фішера значності множинної лінійної моделі в цілому.
43. Вероятность отклонения случайной величины, имеющей нормальное распределение, от матожидания. Правило 3 сигма.
При рассмотрении нормального закона распределения выделяется важный частный случай, известный как правило трех сигм.
Вероятность того, что отклонение нормально распределенной случайной величины от математического ожидания меньше заданной величины :
Если принять = 3, то получаем с использованием таблиц значений функции Лапласа:
Т.е. вероятность того, что случайная величина отклонится от своего математического ожидание на величину, большую чем утроенное среднее квадратичное отклонение, практически равна нулю.
Это правило называется правилом трех сигм.
Не практике считается, что если для какой – либо случайной величины выполняется правило трех сигм, то эта случайная величина имеет нормальное распределение.
44. Асимметрия, эксцесс.
Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется коэффициентом асимметрии.
Асимметрия характеризует отклонение кривой распределения f(x) от центра симметрии нормального распределения при x=a. Если As>0, то максимум функции f(x) отклоняется вправо; если As<0 – влево, при этом значение максимума сохраняется.
Для характеристики островершинности и плосковершинности распределения используется величина, называемая эксцессом.
- центральный
момент 4-го порядка.
Эксцесс распределения характеризует смещение максимума кривой распределения относительно оси симметрии x=a. Если Es>0, то максимум функции f(x) поднимается вверх; если Es<0 – опускается вниз.
45. Неравенство Чебышева.
Если случайная величина Х имеет матожидание МХ=а и дисперсию DX, то для любого Е>0 справедливо неравенство Чебышева.
P( |X-mx| > E) <= Dx/E2
В такой форме неравенство устанавливает верхнюю границу вероятности события.
Для непрерывной случайной величины X с плотностью f(x):
Так
как область интегрирования
можно записать в виде
,
откуда следует
,
то:
Неравенство Чебышева можно записать в другой форме, в которой оно устанавливает нижнюю границу вероятности события:
46. Теорема Чебышева (закон больших чисел в форме Чебышева).
Теорема Чебышева дает одну из наиболее возможных форм закона больших чисел. Она устанавливает связь между средним арифметическим и ее математическим ожиданием наблюденных значений случайной величины.
Yn=(
X1
+ X2
+ …. + Xn)
* 1/n = 1/n
M[Yn] = i/n
= 1/n *
=
1/n * n * mx
= mx
Мат ожидание среднего не зависит от n
Теорема Чебышева устанавливает в точной количественной форме это свойство устойчивости среднего арифметического.
Теорема утверждает, что хотя каждое отдельное значение случайной величины может достаточно сильно отличаться от своего математического ожидания, но среднее арифметическое этих значений будет неограниченно приближаться к среднему арифметическому математических ожиданий.
Отклоняясь от математического ожидания как в положительную так и в отрицательную сторону, от своего математического ожидания, в среднем арифметическом отклонения взаимно сокращаются.
Таким образом, величина среднего арифметического значений случайной величины уже теряет характер случайности.
Теорема Чебышева: При достаточно большом числе независимых опытов среднее арифметическое наблюденных значений случайной величины сходится по вероятности n к ее математическому ожиданию.
В математической форме это означает следующее:
,
где
и
сколь угодно положительные числа
и
.