
- •4. Сутність економіко-математичної моделі.
- •6. Схема математичного моделювання економічних процесів.
- •7. Етапи математичного моделювання.
- •8. Випадковість і невизначеність процесів економічних систем.
- •9. Причини виникнення невизначеності.
- •10. Системні характеристики соціально-економічних систем.
- •11. Стійкість розвитку соціально-економічних систем
- •12. Ефективність соціально-економічних систем.
- •13. Маневреність, надійність, напруженість, еластичність соціально-економічних систем.
- •14. Як можливо покращувати системні характеристики
- •15. Сутність адекватності економіко-математичних моделей.
- •16. Проблеми оцінювання адекватності моделі.
- •17. Способи перевірки адекватності економіко-математичних моделей.
- •18. Поняття адаптації та адаптивних систем.
- •19. Елементи класифікації економіко-математичних моделей.
- •20. Сутність аналітичного та комп’ютерного моделювання.
- •21. Системи економіко-математичних моделей.
- •22. Інтегрована система економіко-математичних моделей.
- •23. Методологічні принципи побудови системи економіко-математичних моделей.
- •24. Предмет та об’єкт “Математичне програмування”. Приклади економічних задач математичного програмування.
- •25. Загальна постановка задачі лінійного програмування. Приклади економічних задач лінійного програмування.
- •26. Модель задачі лінійного програмування в розгорнутому і скороченому вигляді, а також в матричній і векторній формах.
- •27. Властивості розв’язків задачі лінійного програмування. Геометрична інтерпретація задач лінійного програмування.
- •28. Означення планів задачі лінійного програмування (допустимий, опорний, оптимальний).
- •29. Побудова опорного плану задачі лінійного програмування, перехід до іншого опорного плану.
- •30. Теорема про оптимальність розв’язку задачі лінійного програмування симплекс-методом.
- •31. Знаходженння оптимального розв’язку задачі лінійного програмування. Алгоритм симплекс-методу
- •32. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.
- •33. Двоїста задача. Правила побудови двоїстої задачі. Симетричні й несиметричні двоїсті задачі.
- •34. Економічний зміст двоїстої задачі й двоїстих оцінок.
- •35. Теореми двоїстої задачі лінійного програмування,її економ інтерпретація.
- •36 Застосування теорем двоїстості в розв’язуванні задач лінійного програмування.
- •37 Аналіз розв’язків лінійних економіко-математичних моделей. Оцінка рентабельності продукції. Доцільність введення нової продукції.
- •38 Аналіз обмежень дефіцитних і недефіцитних ресурсів.
- •40 Цілочислове програмування. Область застосування цілочислових задач в плануванні й управлінні виробництвом.
- •41. Геометрична інтерпретація задачі цілочислового програмування.
- •42. Метод Гоморі.
- •43. Постановка задачі нелінійного програмування, математична модель. Геометрична інтерпретація.
- •44. Графічний метод розв’язування задач нелінійного програмування.
- •45. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв’язування задачі на безумовний екстремум.
- •46. Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.
- •47. Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.
- •48. Квадратична функція та її властивості.
- •49. Постановка задачі квадратичного програмування та її математична модель.
- •50. Градієнтні методи розв’язання задач нелінійного програмування та їх класифікація.
- •51. Метод Франка-Вульфа. Алгоритм розв’язування задачі нелінійного програмування.
- •52. Загальний вигляд теоретичного та емпіричного рівнянь парної лінійної регресії, їх складові елементи.
- •53. Причини, які спонукають появу випадкової складової в регресійних моделях.
- •54. Етапи побудови економетричної моделі.
- •55. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
- •56.Закони розподілу ймовірностей емпіричних параметрів , їх числові характерстики та статистичні властивості.
- •57.Що являється точковою незміщеною статистичною оцінкою для в моделі парної лінійної регресії?
- •58. Описати алгоритм побудови довірчих інтервалів із заданою надійністю для параметрів і функції регресії
- •59.Побудова точкового та інтервального прогнозу залежної змінної в моделі парної лінійної регресії.
- •60.Описати алгоритм перевірки на статистичну значущість та r в моделі парної лінійної регресії.
- •62. Теоретична та статистична лінійна множинна модель та їх запис у векторно-матричній формі.
- •63. Умови Гаусса-Маркова для парної та множинної лінійної регресії.
- •64. Чому дорівнює вектор в моделі множинної лінійної регресії?
- •65. Чому дорівнює м( ), cov , m( ) в моделі множинної лінійної регресії?
- •66. Як визначається точкова незміщена статистична оцінка для в моделі множинної лінійної регресії?
- •67. Як побудувати довірчий інтервал із заданною надійністю для та теоретичної множинної лінійної регресії?
- •68. Перевірки статистичної значущості та перевірка загальної якості множинної регресії.
- •69. Суть та наслідки мультиколінеарності. Методи усунення з моделі ознаки мультиколінеарності.
- •70. Як виявити ознаку мультиколінеарності в лінійних моделях? в якому випадку: , , ?
- •71.Виробнича функція Кобба-Дугласа. Визначення для неї .
- •72.Поліноміальна та гіперболічна моделі, визначення для них .
- •73.Суть гетероскедастичності. Які негативні наслідки викликає ознака гетероскедастичності в лінійних моделях?
- •74.Які лінійні моделі з порушенням ознаки гетероскедастичності належать до першої, другої та третьої групи? Чому дорівнює для лінійних моделей, що належать цих групи?
- •75. В чому полягає суть тесту гельдфельда-квандта? послідовність його виконання.
- •76. Узагальнений метод найменших квадратів. Визначення вектора і .
- •77. Зважений метод найменших квадратів. Визначення вектора і за умов а) та б) .
- •78. Часовий ряд в загальному вигляді. Поняття тренду, сезонної, циклічної та випадкової компоненти. Основні етапи аналізу числових рядів?
- •79. Що називається середнім темпом та середнім комулятивним темпом часового ряду?
- •80. В чому полягає суть ковзної середньої?
- •81. Який загальний вигляд має лінійний фільтр?
- •82. Автокореляція часового ряду, коефіцієнт автокореляці, автокореляційна функція.
- •83. Що слід розуміти під поняттям «аналітичне вирівнювання рядів»? Описати етапи аналітичного вирівнювання.
- •84. Що називається стаціонарним часовим рядом? Які його основні характеристики?
- •85. Дайте означення економічного ризику. Поясніть його сутність
- •86. Наведіть приклади економічних рішень, обтяжених ризиком. Ідентифікуйте ризики, здійсніть їх якісний аналіз.
- •87.Поясніть основні причини виникнення економічного ризику.
- •88. Пояснити сутність таких понять як: джерело, об`єкт, суб`єкт економічного ризику.
- •89. Назвіть основні види джерел ризику, в певному виді економічної діяльності, й самих ризиків
- •90. Сутність кількісного аналізу ризику. Навести відповідні приклади
- •91. Сутність кількісного аналізу ризику за допомогою методів імітаційного моделювання.
- •92. Основні засади кількісного аналізу ризику методом аналогій.
- •93. Сутність та основні кроки здійснення аналізу ризику за допомогою методу аналізу чутливості. Навести відповідний приклад.
- •94. Чому для кількісного вимірювання величини ризику використовують декілька показників? Навести окремі з них, та подати відповідні приклади.
- •95. Які Ви знаєте показники кількісної оцінки ризику в абсолютному вираженні? Навести приклади.
- •96. Чому та в якому випадку для оцінювання переваг одного з декількох варіантів проектів використовують коефіцієнт варіації, узагальнений коефіцієнт варіації?
- •97. Навести приклади показників ступеня ризику у відносному вираженні.
- •98. В яких ситуаціях доцільніше оцінювати ризик за допомогою семіваріації? За допомогою коефіцієнта семіваріації? Навести приклади.
- •99. Пояснити, що означають терміни: “допустимий”, “критичний”, “катастрофічний” ризик, навести приклади кількісного визначення цих величин.
- •100. Розкрити зміст основних етапів процесу управління ризиком. Навести приклади.
- •101. Наведіть приклади ситуацій, коли доцільно використовувати зовнішні способи зниження ступеня ризику. Дайте відповідні пояснення.
- •102. В яких випадках доцільно й можливо застосовувати страхування як спосіб зниження ризику? Наведіть приклади.
- •103. Для розв’язання яких проблем та в яких сферах економіки можна застосовувати теорію портфеля? Наведіть приклади та дайте відповідні пояснення.
- •104. Суть поняття “систематичний ризик ” та “специфічний ризик ” цінного паперу. Навести приклади та дати відповідні пояснення.
- •Сутність соціально-економічних систем.
- •Структура соціально-економічних систем.
54. Етапи побудови економетричної моделі.
Економетричне моделювання базується на професійних знаннях про об'єкт дослідження і має такі етапи:
Знайомство з економічною теорією, визначення набору змінних, які описують процес функціонування досліджуваних об'єктів.
Аналіз взаємозв'язків між окремими змінними, висунення гіпотези взаємозв’язку. Залежні змінні називають ендогенними, а незалежні змінні - екзогенними.
Специфікація моделі. Прийняті теоретичні уявлення та гіпотези виразити у вигляді математичних рівнянь, тобто зробити вибір раціонального типу економетричної модем.
Формування масиву вхідної інформації згідно з метою та завданням дослідження.
Оцінка параметрів моделі методом найменших квадратів та аналіз залишків (відхилень) з метою виявлення відповідності специфікацій моделей вимогам класичної лінійної моделі.
Якщо деякі вимоги не виконуються, то для продовження аналізу треба замінити специфікацію або застосувати інші методи оцінювання параметрів.
7. Верифікація моделі. Проведення аналізу достовірності моделі та прогнозу за побудованою моделлю.
55. Параметри моделі парної лінійної регресії, їх сутність та оцінювання.
Моделі лінійної регресії здобули найширше використання в економічних дослідженнях. В загальному вигляді теоретична модель парної регресії записується так:
де
-параметри
(коефіцієнти) регресії.Для визначення
цих коефіцієнтів необхідно використати
всі значення змінних У та Х генеральної
сукупності, що практично здійснити
неможливо. Отже завдання ланайного
регресійного аналізу полягає в тому,
щоб за наявності статистичних даних
визначити найкращі статистичні оцінки
для невідомих теоретичних параметрів
(коефіцієнтів)
.
Таким чином нам необхідно побудувати так зване емпіричне рівняння на базі інформації, одержаної із вибірки. Емпірична лінійна модель парної регресії має вигляд:
де
-емпіричні
коефіцієнти регресії.Їх статистичні
оцінки можна визначити шляхом мінімізації
суми квадратів відхилень, тобто виразу
де
уі
–значення ознаки У, яку одержано зі
статистичного розподілу; уі
*-значення ознаки У, яке може бути
обчислено за виразом
за
умови визначення емпіричних коефіцієнтів
.Здійснення
розрахунку цих коефіцієнтів за критерієм
мінімізації суми має назву методу
найменших квадратів (МНК). Цей метод
найбільш простий, розраховані за ним
статистичні оцінки
мають ряд оптимальних властивостей за
дотримання певних умов.
56.Закони розподілу ймовірностей емпіричних параметрів , їх числові характерстики та статистичні властивості.
Закони розподілу.На основі центральної граничної теореми теорії ймовірностей можемо стверджувати, що випадкові величини β0 β1 й емпірична функція β0 + β1хі матимуть нормальний закон розподілу ймовірностей. Тоді, здійснюючи нормування цих величин, отримаємо:
Оскільки
е = уі
(β0
+ β1хі
),
тобто до складу еі
входить
випадкова величина
β0
+ β1хі
, що має нормальний закон розподілу, то
на основі теореми теорії ймовірностей
про побудову законів розподілу можна
стверджувати, що
буде
розподілена за законом Х2.
Тоді
(і = 0.1);
,
тобто мають розподіл Х2
із
κ = n
-2 ступенем свободи. А випадкові величини
тобто
мають розподіл х із κ = n
-2.
Числові
характер.Отримане
за моделлю значення залежної змінної
У = уі
= β0
+ β1хі
є випадковою величиною, бо визначається
випадковими емпіричними коефіцієнтами
β0,
β1.
Враховуючи
це, можемо визначити для уі
основні
числові характеристики, а саме:
Таким
чином маємо
,
,