
- •Виробничі процеси та обладнання об’єктів автоматизації конспект лекцій доцента кафедри нгтт і т Гаєвої Любов Іванівни
- •1.1 Зміст і задачі дисципліни
- •1.2 Класифікація технологічних процесів
- •1.3 Хімічний і фракційний склади нафти
- •1.3.1 Парафінові вуглеводні
- •1.3.2 Нафтенові вуглеводні
- •1.3.3 Ароматичні вуглеводні
- •1.3.4 Фракційний склад нафти
- •2 Основні поняття масообмінних процесів
- •2.1 Загальні ознаки масообмінних процесів
- •2.2 Способи визначення складу фаз
- •2.3 Основне рівняння масопередачі
- •3.1 Призначення і суть процесу абсорбції
- •3.2 Використання абсорбції в нафтогазовій промисло-вості
- •3.3 Робота системи абсорбер-десорбер неперервної дії
- •3.4 Параметри контролю і регулюванню при абсорбції та десорбції
- •3.4.1 Температура в абсорбері
- •3.4.2. Тиск в абсорбері
- •3.4.3 Питома витрата абсорбенту
- •3.4.4 Рівень рідини в низу абсорбера і десорбера
- •3.4.5 Температура в десорбері
- •3.4.6 Тиск в десорбері
- •3.4.7 Рушійна сила абсорбції
- •3.4.8 Площа контакту і час контакту абсорбенту і газової суміші
- •3.5 Вимоги до абсорбентів
- •3.6 Типи абсорберів
- •4 Процес адсорбції
- •4.1 Призначення і суть процесу
- •4.2 Використання адсорбції в нафтогазовій промисло-вості
- •4.3 Робота системи адсорбер-десорбер періодичної дії
- •4.4 Робота системи адсорбер-десорбер неперервної дії
- •4.5 Параметри контролю і регулювання при адсорбції і десорбції
- •4.5.1 Температура в адсорбері
- •4.5.2 Тиск в адсорбері
- •4.5.3 Питома витрата адсорбенту
- •4.5.4 Температура в десорбері
- •4.5.5 Тиск в адсорбері
- •4.5.6 Природа газової суміші і властивості адсорбенту
- •5 Процес ректифікації
- •5.1 Призначення і суть процесу
- •5.2 Використання процесу в нафтогазовій промисло-вості
- •5.3 Будова і робота простої ректифікаційної колони
- •5.4 Будова і робота складної ректифікаційної колони
- •5.5 Параметри контролю і регулювання при ректифікації
- •5.5.1 Температура верха колони
- •5.5.2 Температура низу колони
- •5.5.3 Тиск в колоні
- •5.5.4 Температура і витрата сировини
- •5.5.5 Рівень залишку в колоні
- •5.5.6 Температура на тарілках виводу бокових фракцій
- •5.6 Матеріальний баланс ректифікаційної колони
- •5.7 Крива рівноваги фаз: її побудова та рівняння
- •5.8 Ізобарні температурні криві
- •5.9 Графічний метод визначення кількості тарілок в колоні
- •5.10 Визначення температурного режиму простої ректифікаційної колони
- •5.11 Визначення геометричних розмірів колони: діаметра і висоти
- •6 Процес екстракції
- •6.1 Призначення і суть процесу
- •6.2 Використання в нафтогазовій промисловості
- •6.3 Методи екстракції
- •6.3.1 Однократна екстракція
- •6.3.2 Багатократна екстракція
- •6.3.3 Протитічна екстракція
- •6.4 Будова і робота екстракційної колони
- •6.5 Параметри контролю і регулювання при екстракції
- •6.5.1 Температура
- •6.5.2 Співвідношення розчинник: сировина
- •6.5.3 Якість розчинника
- •6.5.4 Рівень границі розділу фаз
- •6.6 Визначення складу фаз за допомогою трикутної діаграми
- •7 Теплові процеси
- •7.1 Теплообмінні апарати
- •7.1.1 Кожухотрубні теплообмінники з нерухомим трубними решітками
- •7.1.2 Теплообмінні апарати з температурними компенсаторами
- •7.1.3 Теплообмінні апарати з плаваючою головкою (з рухомою трубною решіткою)
- •7.1.4 Теплообмінні апарати з u-подібними трубками
- •7.1.5 Теплообмінники типу «труба в трубі»
- •7.1.6 Випарники з паровим простором
- •7.1.7 Апарати повітряного охолодження
- •7.2 Класифікація і маркування апо
- •7.3 Маркування та розрахунок кожухотрубчастих теплообмінників
- •7.3.1 Маркування кожухотрубчастих теплообмінників
- •7.3.2 Розрахунок кожухотрубчастих теплообмінників
- •7.4 Трубчасті печі
- •7.5 Умовні позначення типових трубчастих печей
- •8 Товарні нафтопродукти
- •8.1 Технологічна класифікація нафт
- •8.2 Основні напрями переробки нафти
- •8.3 Класифікація і характеристика товарних нафтопродуктів
- •8.4 Палива
- •8.4.1 Карбюраторні палива
- •8.4.2 Реактивні палива
- •8.4.3 Дизельні палива
- •8.4.4 Газотурбінні палива
- •8.4.5 Котельні палива
- •8.5 Нафтові оливи
- •8.5.1 Моторні оливи
- •8.5.2 Трансмісійні оливи
- •8.5.3 Індустріальні оливи
- •8.5.4 Турбінні і компресорні оливи
- •8.5.5 Спеціальні оливи
- •8.6 Пластичні мастила
- •8.7 Парафіни, церезини, вазеліни
- •8.8 Нафтові розчинники та ароматичні вуглеводні
- •8.9 Нафтові бітуми
- •8.10 Нафтовий кокс
- •8.11 Технічний вуглець
- •8.12 Присадки до палив та олив
- •9.2 Методи руйнування нафтових емульсій
- •9.3 Будова і робота електродегідраторів
- •9.3.2 Горизонтальні електродегідратори
- •9.4 Схема електрознесолювальної установки та її опис
- •9.5 Параметри контролю і регулювання на установці
- •9.5.1 Температура і тиск в електродегідраторі
- •10.2 Первинна переробка нафти
- •10.2.1 Призначення первинної переробки і класифікація установок авт
- •10.2.2 Сировина і одержувані продукти
- •10.2.3 Принципова технологічна схема авт з трьохкратним випаровуванням і їх опис
- •10.3 Термічні процеси переробки нафти (коксування)
- •10.3.1 Призначення, і суть процесу
- •10.3.2 Механізми реакцій
- •10.3.3 Сировина і одержувані продукти
- •10.3.4 Технологічна схема установки сповільненого коксування і її опис
- •10.3.5 Параметри контролю і регулювання на установці
- •10.3.5.1 Якість сировини
- •10.3.5.2 Температура входу сировини в реактор
- •10.3.5.3 Тиск в реакторі
- •10.3.5.4 Час перебування сировини в реакторі
- •10.3.5.5 Коефіцієнт рециркуляції
- •10.4 Каталітичні процеси
- •10.4.1 Каталітичний реформінг
- •10.4.1.1 Призначення, суть і хімізм процесу
- •10.4.1.2 Сировина і одержувані продукти
- •10.4.1.3 Каталізатори
- •10.4.1.4 Принципова технологічна схема установки каталітичного риформінгу і її опис
- •10.4.2 Параметри контролю і регулювання на установці
- •10.4.2.1 Якість сировини
- •10.4.2.2 Температура на вході в реактори
- •10.4.2.3 Об’ємна швидкість подачі сировини
- •10.4.2.4 Тиск в реакторах
- •10.4.2.5 Кратність циркуляції водневмісного газу
- •10.5.2 Сировина і одержувані продукти
- •10.5.3 Каталізатор
- •10.5.4 Принципова технологічна схема установки каталітичного крекінгу з ліфт- реактором і її опис
- •10.5.5 Параметри, що впливають на процес
- •10.5.5.1 Якість сировини
- •10.5.5.2 Температура в реакторі
- •10.5.5.3 Час контакту сировини і каталізатора
- •10.5.5.4 Кратність циркуляції каталізатора
- •10.5.5.5 Тиск в реакторі
- •11 Процеси очищення продуктів
- •11.1 Процес гідроочищення
- •11.1.1 Призначення установки, суть і хімізм процесу
- •11.1.2 Сировина і одержувані продукти
- •11.1.3 Умови проведення процесу
- •11.1.4 Каталізатори
- •11.1.5 Принципова технологічна схема гідроочищення дизельного палива в паровій фазі і її опис
- •11.1.6 Параметри контролю і регулювання на установці
- •11.1.6.1 Якість сировини
- •11.1.6.2 Температура в реакторі
- •11.1.6.3 Тиск в реакторі
- •11.1.6.4 Об’ємна швидкість подачі сировини і кратність циркуляції водневмісного газу
- •11.2 Процес карбамідної депарафінізації
- •11.2.1 Призначення і суть процесу
- •11.2.2 Сировина і одержувані продукти
- •11.2.3 Параметри, що впливають на процес
- •11.2.3.1 Якість сировини
- •11.2.3.2 Склад і концентрація карбаміду
- •11.2.3.3 Співвідношення карбамід-сировина
- •11.2.3.4 Температура
- •11.2.3.5 Склад і кількість активатора та розчинника
- •11.2.3.6 Час контакту сировини з карбамідом
- •11.3 Опис технологічної схеми установки карбамідної депарафінізації дизельного палива
10.4.2.5 Кратність циркуляції водневмісного газу
Кратність циркуляції ВВГ – це об’єм водневмісного газу, що подається в реактор на одиницю об’єму сировини за нормальних умов. Кратність циркуляції ВВГ коливається в межах 900-1500 м3/м3. Розбавлення парів сировини воднем запобігає закоксовуванню каталізатора і сприяє збільшенню тривалості роботи каталізатора. З іншого боку, збільшення кратності циркуляції ВВГ пов’язане із зростанням енергетичних затрат на експлуатацію установки реформінгу. Кратність циркуляції ВВГ регулюється об’ємом ВВГ, що додається до сировини.
10.4.2.6 Перепад температури по висоті реактора
Температурний перепад по висоті реактора служить характеристикою активності каталізатора. По мірі відпрацювання каталізатора, відкладенню коксу на ньому, зниженню концентрацію водню у циркулюючому ВВГ перепад температур по висоті реактора зменшується. Перепад температури підтримується в межах 10 оС і контролюється п’ятьма термопарами.
10.4.2.7 Перепад тиску на каталізаторі
На шарі каталізатора існує завжди перепад тиску, який викликаний гідравлічним опором каталізатора. Зменшення або відсутність перепаду тиску свідчить про те, що в шарі каталізатора утворилися канали по яких рухаються пари сировинно-водневої суміші. Ця суміш проходить через каталізатор без суттєвої зміни структури, що є небажаним. Перепад тиску на каталізаторі контролюється дифманометром.
10.4.2.8 Температура стінок реактора
За допомогою термопар проводиться постійний контроль температури стінок реактора. Це зв’язано з тим, що при температурі вище 260 оС водень починає розчинятися у металі і змінює його структуру. Внаслідок цього матеріал стінок реактора втрачає свої початкові властивості і можливе утворення мікротріщин, через які проходить водневмісний газ.
10.5 Каталітичний крекінг
10.5.1 Призначення, суть і механізм процесу
Каталітичний крекінг служить для одержання компонентів моторних палив, сировини для нафтохімії, виробництва технічного вуглецю і коксу із важких нафтових фракцій з межами википання 350- 500 (540 °С).
Суть процесу полягає в тому, що сировина в реакторі змішується з гарячим каталізатором. Молекули сировини при контакті з поверхнею каталізатора розриваються (крекуються) з утворенням більш легких продуктів порівняно з вихідною сировиною. В умовах каталітичного крекінгу (температура 450-510 0С, тиск 0,1-0,3 МПа, каталізатор-аморфний або кристалічний алюмосилікатний) протікає велика кількість реакцій, серед яких визначаючими є: розрив вуглець-вуглецевого зв’язку, перерозподіл водню, ароматизація, ізомеризація, розрив і перегрупування вуглеводневих кілець, конденсація, полімеризація і коксоутворення. Механізм більшості реакцій каталітичного крекінгу найбільш задовільно пояснюється карбокатіонною теорією, згідно якої активними проміжними частинками є карбокатіони. Вони утворюються при гетеролітичному розриві зв’язків у молекулі вуглеводнів під впливом каталізатора або при приєднанні до вуглеводню електрондефіцитних кислотних груп каталізатора.
У схематичному вигляді основні напрями перетворення вуглеводнів при каталітичному крекінгу можна представити наступним чином:
Таким чином, найбільш активними вуглеводнями в умовах контакту з алюмосилікатним каталізатором є олефінові. Це пояснюється в першу чергу їх високою адсорбційною здатністю по відношенню до каталізатора. Реакції перерозподілу водню нарівні з розщепленням та ізомеризацією в значній мірі визначають якість продуктів крекінгу.