Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

OT_khrestomatia

.pdf
Скачиваний:
14
Добавлен:
14.06.2018
Размер:
3.81 Mб
Скачать

В люминесцентных лампах электрический дуговой разряд создается в ïàðå è инертном газе при низком давлении. Спектр зависит от использованного ртутного люминофора. К этим лампам относятся следующие источники излучения: люминесцентные солнечные лампы (длины волн 275-300 нм, максимум - 313 нм, хороши для загара); источники невидимого излучения («черного света») — диапазон длин волн 300-400 нм (используются для обеспечения люминесценции в красках, чернилах, для фототерапии).

Источниками теплового УФ-излучения является сварка кисло- родно-ацетиленовыми, кислородно-водородными, плазменными горелками. Интенсивность различных диапазонов УФ-излучения при сварке зависит от многих факторов, включая материал, из которого изготовлены электроды, разрядный ток и ãàç, окружающий дугу.

Монохроматическое УФ-излучение генерируют лазеры. К ним относится группа эксимерных лазеров с длинами волн 193, 248, 308, 351 нм. Основной особенностью эксимерных лазеров является, по мнению большинства исследователей, отсутствие термического действия на биологические ткани, что позволяет использовать их в медицине. УФ-эксимерным лазерам находят применение при обработке металлов (серебро, золото, медь), пластмасс, стекла, керамики, комбинированных материалов. Эксиплексные лампы способны заменить лазеры там, где требуются мощные источники УФ-излучения.

Воздействие УФ-излучения приводит в первую очередь к ряду специфических изменений в коже и органе зрения. Установлено, что оно может сопровождаться и общими неблагоприятными реакциями организма. Наиболее подвержен повреждающему действию УФизлучения зрительный анализатор. Острые поражения глаз, т. н. электроофтальмии (фотоофтальмии), представляют собой острый конъюнктивит. Заболеванию предшествует латентный период, продолжительность которого чаще всего составляет 12 ч. Проявляется заболевание ощущением наличия постороннего тела (песка) в глазах, светобоязнью, слезотечением, блефароспазмом. Нередко обнаруживается эритема кожи лица и век, заболевание длится 2-3 дня. С хроническими поражениями связывают хронический конъюнктивит, блефарит, катаракту хрусталика. Профилактические мероприятия по предупреждению электроофтальмий сводятся к применению светозащитных очков или щитков при электросварочных и др. работах.

Поражения кожи проявляются в виде острых дерматитов с эритемой, иногда отеком, вплоть до образования пузырей. Наряду с местной реакцией могут отмечаться общетоксические явления с повышением температуры, ознобом, головными болями, диспепсическими явлениями. В дальнейшем наступают гиперпигментация и шелушение. Классическим примером поражения кожи, вызванного УФ- излуче-нием, служит солнечный ожог. Хронические изменения кож-

101

ных покровов, вызванные УФ-излучением, выражаются в «старении» (солнечный эластоз), развитии кератоза, атрофии эпидермиса; возможны злокачественные новообразования. Для защиты кожи от УФизлучения используются защитная одежда, противосолнечные экраны (навесы и т. п.), специальные кремы.

В целях профилактики неблагоприятного воздействия УФизлучения важно соблюдать гигиенические нормативы, в частности СН ¹ 4557-88 «Санитарные нормы ультрафиолетового излучения в производственных помещениях».

Минздравом России утверждены Методические указания ¹ 504689 «Профилактическое ультрафиолетовое облучение людей». Наряду с перечнем требований к облучательным установкам длительного и кратковременного действия, контролю за УФ-облучением, проектированию и экспуатации УФ-оборудования, этот документ устанавливает нормы УФ-облученности и дозы за сутки в эффективных и энергетических единицах. Параметры УФ-облученности и суточной дозы подразделяются на минимальные, максимальные и рекомендуемые. В качестве одного из требований к облучательным установкам регламентируется диапазон УФ-излучения от 280 до 400 нм.

Максимальные уровни УФ-облученности не должны превышать:

45 ìÂò/ì2 - от люминесцентных ламп в рабочих помещениях промышленных и общественных зданий, в помещениях детских больниц и санаториев при продолжительности ежесуточного облуче- ния 16,5 мВт/м2 – от облучательных установок длительного действия

ñос-ветительно-облучательными лампами независимо от времени облучения, вида помещения и возраста облучаемых;

7,2 Âò/è2 для взрослых и 4,8 Вт/м2 для детей — от облучательных установок кратковременного действия (в фотариях).

Контроль за уровнями УФ-излучения обеспечивается с помощью специальных радиометров, в частности дозиметра ДАУ-81 и спектрорадиометра ОРП с насадками для измерения облученности в спектральных областях УФ-А, УФ-В, УФ-С. Разработаны малогабаритные переносные приборы серии «Аргус» для измерения энергетических характеристик УФ-излучения.

При использовании в производственном помещении нескольких УФ-генераторов возникает отраженное действие (на работающих) излучения, которое может быть значительно ослаблено путем окраски стен с учетом коэффициента отражения. Защитная одежда должна иметь длинные рукава и капюшон. Глаза защищают специальными очками со стеклами, содержащими оксид свинца, но даже обычные стекла не пропускают УФ-лучи с длиной волны меньше 315 нм.

♦ ♦ ♦ ♦

102

2.16. ÝЛЕКТРОСТАТИЧЕСКИЕ ПОЛЯ (ÝÑÏ)

Это поля неподвижных электрических зарядов либо стационарные электрические поля постоянного тока. Они достаточно широко используются в промышленности для электрогазоочистки, электростатической сепарации руд и материалов, электростатического нанесения лакокрасочных и полимерных материалов и т. д. Вместе с тем существует целый ряд производств и технологических процессов по изготовлению, обработке и транспортировке диэлектрических материалов, где отмечается образование электростатических зарядов и полей, вызванных электризацией перерабатываемого продукта (текстильная, деревообрабатывающая, целлюлозно-бумажная, химическая промышленность и др.). В энергосистемах ЭСП образуются вблизи работающих электроустановок, распределительных устройств и ЛЭП постоянного тока высокого напряжения. При этом имеет место также повышенная ионизация воздуха (напр., в результате коронных разрядов) и возникновение ионных токов.

Основными физическими параметрами ЭСП являются напряженность поля и потенциалы его отдельных точек. Напряженность ЭСП

— векторная величина; определяется отношением силы, действующей на точечный заряд, к величине этого заряда, измеряется в вольтах на метр (В/м). Энергетические характеристики ЭСП определяются потенциалами точек поля.

Биологическое действие. ЭСП — фактор, обладающий сравнительно низкой биологической активностью. В 60-е гг. XX в. биологическое действие ЭСП связывали с электрическими разрядами, возникающими при контакте человека с заряженными или незаземленными предметами. Именно с ним связывали возможное развитие невротических реакций, в т. ч. фобий. В последующие годы ученые пришли к выводу, что ЭСП само по себе обладает биологической активностью. Выявляемые у работающих в условиях воздействия ЭСП нарушения носят, как правило, функциональный характер и укладываются в рамки астеноневротического синдрома и вегетососудистой дистонии. В симптоматике преобладают субъективные жалобы невротического характера (головная боль, нарушение сна, ощущение «удара током» и т. п.). Объективно обнаруживаются нерезко выраженные функциональные сдвиги, не имеющие каких-либо специфи- ческих проявлений. Кровь устойчива к воздействию ЭСП. Отмечается лишь некоторая тенденция к снижению показателей красной крови (эритроциты, гемоглобин), незначительному лимфоцитозу и моноцитозу. Биоэффекты сочетанных влияний на организм ЭСП и аэроионов свидетельствуют о синергизме в действии факторов. При этом превалирующим фактором выступает ионный ток, возникающий в результате движения аэроионов ЭСП.

103

Нормирование ЭСП. В соответствии с «Санитарно-гигиени- ческими нормами допустимой напряженности электростатического поля» ¹ 1757-77 и ГОСТ 12.1.045-84 ССБТ «Электростатические поля. Допустимые уровни на рабочих местах и требования к проведению контроля» предельно допустимая величина напряженности ЭСП на рабочих местах устанавливается в зависимости от времени воздействия в течение рабочего дня.

Предельно допустимая напряженность ЭСП на рабочих местах обслуживающего персонала не должна превышать следующих вели- чин: при воздействии до 1 ч - 60 кВ/м; при воздействии свыше 1 ч до 9 ч величина, определяется расчетным методом.

Нормативный документ «Допустимые уровни напряженности электростатических полей и плотности ионного тока для персонала подстанций и ВЛ постоянного тока ультравысокого напряжения» ¹ 6022-91 регламентирует условия сочетанного влияния указанных в названии факторов на персонал, обслуживающий электроустановки постоянного тока ультравысокого напряжения. В соответствии с требованиями документа ПДУ ЭСП и плотности ионного тока для полного рабочего дня составляют 15 кВ/м и 20нА/м2; для 5-часового воздействия — 20 кВ/м и 25 н А/м2.

Контроль уровней ЭСП в настоящее время затруднен. Рекомендованные приборы (ИНЭП-1, ИНЭП-20Д, ИНЭСП-1, ИЭЗ-П, ИНЭП-3) предназначены для измерения напряженности ЭСП на поверхности диэлектриков. Попытки оценивать с их помощью ЭСП в пространстве (на рабочих местах, перед экранами телевизоров, дисплеев и т. п.), ведут к большим погрешностям в результатах измерений. Из разработанных в последнее время приборов можно рекомендовать измеритель электростатического потенциала ИЭСП-01 и измеритель напряженности электростатического поля ПЗ-27.

Профилактика. При выборе средств защиты от статического электричества (экранирование источника поля или рабочего места, применение нейтрализаторов статического электричества, ограни- чение времени работы и др.) должны учитываться особенности технологических процессов, физико-химические свойства обрабатываемого материала, микроклимат помещений и др., что определяет дифференцированный подход при разработке профилактических мероприятий. Одним из распространенных средств защиты от статического электричества является уменьшение генерации электростатических зарядов или их отвод с наэлектризованного материала, что достигается:

заземлением металлических и электропроводных элементов оборудования;

увеличением поверхностей и объемной проводимости диэлектриков; установкой нейтрализаторов статического электричества.

104

Заземление проводится независимо от использования др. методов защиты. Заземляются не только элементы оборудования, но и изолированные электропроводящие участки технологических установок. Более эффективным средством защиты является увеличение влажности воздуха до 65-75 %, когда это возможно по условиям технологического процесса. В качестве средств индивидуальной защиты могут применяться антистатическая обувь, антистатический халат, заземляющие браслеты для защиты рук и др. средства, обеспечивающие электростатическое заземление тела человека.

♦ ♦ ♦ ♦

2.17.ÝЛЕКТРОМАГНИТНЫЕ ПОЛЯ ПРОМЫШЛЕННОЙ ЧАСТОТЫ

Электромагнитные поля промышленной частоты (ЭМП ПЧ) являются частью сверхнизкочастотного диапазона радиочастотного спектра, наиболее распространенной как в производственных условиях, так и в быту; диапазон ПЧ представлен в нашей стране частотой 50 Гц (в ряде стран Американского континента 60 Гц). Основными источниками ЭМП ПЧ, создаваемыми в результате деятельности че- ловека, являются различные типы производственного и бытового электрооборудования переменного тока, в первую очередь подстанции и воздушные ЛЭП сверхвысокого напряжения (СВН). Поскольку соответствующая частоте 50 Гц длина волны составляет 6000 км, че- ловек подвергается воздействию фактора в ближней зоне. Гигиениче- ская оценка ЭМП ПЧ осуществляется раздельно по электрическому и магнитному полям.

Биологическое действие. При изучении состояния здоровья лиц, подвергавшихся производственным воздействиям ЭМП ПЧ при обслуживании подстанций и воздушных ЛЭП напряжением 220, 330, 400, 500 кВ (оценивались интенсивностно-временные параметры воздействия только электрического поля — ЭП ПЧ), отмечены изменения состояния здоровья. У персонала, обслуживающего подстанции напряжением 500 кВ, отмечались жалобы неврологического характера (головная боль, повышенная раздражительность, утомляемость, вялость, сонливость), а также нарушение деятельности сердечнососудистой системы и желудочно-кишечного тракта. Были выявлены некоторые функциональные изменения нервной и сердечнососудистой систем в форме вегетативной дисфункции (тахи-и брадикардия, артериальная гипертензия или гипотония, лабильность пульса, гипергидроз). Имеются данные об изменении таких показателей, как содержание холестерина в крови, сдвиг соотношения полов в потомстве, тенденция к увеличению хромосомных аберраций в сомати- ческих клетках (лимфоцитах крови).

105

Основную опасность для организма представляет влияние наведенного электрического тока на возбудимые структуры (нервная, мышечная ткань). Параметром, определяющим степень воздействия, является плотность наведенного в теле вихревого потока. При этом для электрических полей (ЭП) рассматриваемого диапазона частот характерно слабое проникновение в тело человека, для магнитных полей (МП) организм практически прозрачен. Зависимость биоэффектов от плотности наведенных ЭП и МП положена в основу разработанных по заданию ВОЗ Международных временных рекомендаций по ПДУ ЭП и МП 50/60 Гц. Эта зависимость может быть представлена следующим образом:

минимальные эффекты, не представляющие опасности для че- ловека при плотности тока 1-10 ìÀ/ì2;

выраженные эффекты (зрительные и со стороны нервной системы) —10-100 ìÀ/ì2;

стимуляция возбудимых структур, возможно неблагоприятное влияние на здоровье – 100-1000 ìÀ/ì2;

возможна экстрасистолия, фибрилляция желудочков сердца (острое поражение) — более 1000 мА/м2.

Нормирование. Гигиеническая регламентация ЭМП ПЧ осуществляется раздельно для ЭП и МП. Нормируемым параметром ЭП является напряженность, которая оценивается в киловольтах на метр (кВ/м); параметром МП — магнитная индукция или напряженность магнитного поля, измеряемые соответственно в миллиили микротеслах (мТл, мкТл) и амперах или килоамперах на метр (À/è, êÀ/ì).

ПДУ напряженности электрических полей регламентируются СанПиН ¹ 5802-91 «Санитарные нормы и правила выполнения работ в условиях воздействия электрических полей промышленной частоты (50 Гц)» и ГОСТ 12.1.002-84 «Электрические поля промышленной частоты. Допустимые уровни напряженности и требования к проведению контроля на рабочих местах». В соответствии с требованиями ГОСТ 12.1.002-84 и СанПиН ¹ 5802-91 ПДУ ЭП ПЧ для полного рабочего дня составляет 5 кВ/м, а максимальный ПДУ для воздействия не более 10 мин — 25 кВ/м.

В интервале интенсивностей 5-20 кВ/м допустимое время пребывания определяется по формуле

Ò=50/(Å-2),

ãäå Ò — допустимое время пребывания в ЭП при соответствующем уровне напряженности, ч;

Å напряженность, воздействующего ЭП в контролируемой зоне, кВ/м.

106

Допустимое время пребывания в ЭП может быть реализовано одноразово или дробно в течение рабочего дня. В остальное рабочее время напряженность ЭП не должна превышать 5 кВ/м.

Оценку воздействия МП ПЧ на человека согласно СанПиН 2.2.4.723-98 «Переменные магнитные поля промышленной частоты (50 Гц) в производственных условиях» производят на основании 2 параметров – интенсивности и продолжительности воздействия. ПДУ МП ПЧ устанавливают в зависимости от длительности пребывания персонала для условий общего (на все тело) и локального (на конечности) воздействия. При необходимости пребывания персонала в зонах с различной напряженностью МП общее время выполнения работ в этих зонах не должно превышать предельно допустимое для зоны с максимальной напряженностью. Допустимое время пребывания может быть реализовано за 1 раз или дробно в течение рабочего дня.

Требования к контролю и методам измерений. Для оценки напряженности ЭП и МП используются 2 типа приборов: направленного действия (однокоординатные) и оснащенные изотропными датчи- ками. Для оценки напряженности ЭП рекомендуется применять:

измеритель напряженности ближнего поля;

приборы типа ПЗ-1М с однокоординатным датчиком, размещенным в едином корпусе с измерительным блоком;

ПИНЭП-1 с многоэлементным датчиком;

ÈÍÝÏ-50 с трехкоординатным датчиком и аналого-цифровым устройством в едином корпусе.

Для оценки напряженности МП рекомендуется использовать:

микротесламетр Г-79 с выносной антенной;

миллитесламетр Ф 4356;

тесламетр универсальный типа 43205 с однокоординатным дат- чиком;

миллитесламетр портативный модульный ÌÏÌ-2;

измеритель напряженности магнитного поля ИНМП-50 с выносным трехкоординатным датчиком;

анализатор переменного магнитного поля типа EFA-3, имеющий трехкоординатный датчик, и др.

Профилактика воздействия ЭМП ПЧ. Для размещения воздушный ЛЭП сверхвысокого напряжения различного класса устанавливаются возрастающие размеры санитарно-защитных çîí. При проектировании воздушных ЛЭП напряжением 750-1150 кВ должно предусматриваться их удаление от границ населенных пунктов, как правило, не менее чем на 250-300 м соответственно.

В пределахсанитарно-защитнойзоны запрещается:

♦ жилищное строительство и размещение зон отдыха;

107

размещение предприятий по обслуживанию автотранспорта, складов нефтепродуктов;

хранение и производство операций с горючими материалами всех видов;

остановка автотранспорта, габариты которого превышают допустимые;

ремонт машин и механизмов;

проведение поливных работ поливальными машинами, водяная струя которых может войти в соприкосновение с проводами ЛЭП;

размещение незаземленных проводников большой протяженности (проволочные изгороди, растяжки для подвески винограда, хмеля и т. п.);

работа при сильном ветре, тумане и гололеде.

На территории санитарно-защитной зоны воздушной ЛЭП напряжением 750 кВ и выше запрещается:

эксплуатировать машины и механизмы без защитных экранов, обеспечивающих снижение напряженности ЭП па рабочих местах;

создавать жилые здания и приусадебные участки;

привлекать для сельскохозяйственных работ детей и подростков

âвозрасте до 18 лет.

Допустимое время пребывания персонала в условиях воздействия ЭМП ПЧ ограничивается продолжительностью рабочего дня и, соответственно, уменьшается с возрастанием интенсивности экспозиции. В целях профилактики неблагоприятного действия ЭМП ПЧ на работающих применяются средства индивидуальной и коллективной защиты (только от электрической составляющей ЭП ПЧ) в соответствии с требованиями ГОСТ 12.1.002-84, СанПиН 5802-91 и ГОСТ 12.4.154-85 ССБТ «Устройства экранирующие для защиты от электрических полей промышленной частоты. Общие технические требования, основные параметры и размеры», ГОСТ 12.4.172-87 ССБТ «Комплект индивидуальный экранирующий для защиты от электрических полей промышленной частоты. Общие технические требования и методы контроля».

Ê средствам коллективной защиты относятся:

стационарные экраны - различные заземленные металлические конструкции (щитки, козырьки, навесы сплошные или сетчатые, системы тросов), размещаемые над рабочими местами персонала, находящегося в зоне действия ЭП ПЧ;

передвижные (переносные) средства защиты - различные виды съемных экранов.

СКЗ применяются для персонала, обслуживающего электроустановки сверхвысокого напряжения, и для населения. В качестве

средств индивидуальной защиты от ЭП ПЧ служат индивидуальные

108

экранирующие комплекты. Имеются различные типы комплектов с разной степенью экранирования не только для наземных работ в зоне воз-действия ЭП ПЧ напряженностью не более 60 кВ/м, но и для выполнения работ с непосредственным касанием токоведущих частей, находящихся под напряжением (работ под напряжением) на воздушных ЛЭП напряжением 110-1150 кВ. Снижение уровней МП ПЧ до предельно допустимых обеспечивается также за счет снижения нагрузки на токоведущих частях, находящихся под напряжением, использованием материалов для экранирования магнитного поля или активных экранов.

♦ ♦ ♦ ♦

2.18.ÝЛЕКТРОМАГНИТНЫЕ ПОЛЯ РАДИОЧАСТОТ (ÝÌÏ Ð×)

Основными источниками электромагнитной энергии радиочастотного диапазона (РЧ) в производственных помещениях являются неэкранированные ВЧ-блоки установок: генераторные шкафы, конденсаторы, ВЧ-трансформаторы, магнетроны, клистроны, лампы бегущей волны, волноводные тракты и др.). Основными источниками излучения электромагнитной энергии РЧ в окружающую среду служат антенные системы радиолокационных станций (РЛС), радио-и телерадиостанций, в т. ч. систем мобильной радиосвязи, воздушные ЛЭП и пр. Современный этап характеризуется увеличением мощностей источников электромагнитого излучения (ЭМИ) РЧ, что при определенных условиях может приводить к электромагнитному загрязнению окружающей среды и оказывать неблагоприятное воздействие на организм человека.

Биологическое действие. Взаимодействие внешних ЭМП с биологическими объектами осуществляется путем наведения внутренних полей и электрических токов, величина и распределение которых в теле человека зависит от целого ряда параметров – таких, как размер, форма, электрические и магнитные свойства тканей (электриче- ская/магнитная проницаемость и электрическая/магнитная проводимость), ориентация объекта относительно поляризации тела, а также от характеристик ЭМП (частота, интенсивность, модуляция и др.).

Поглощение и распределение поглощенной энергии внутри тела существенно зависит от формы размеров облучаемого объекта, от соотношения этих размеров с длиной волны излучения. С этих позиций в спектре ЭМИ РЧ можно выделить 3 области: ЭМИ с частотой до 30 МГц; ЭМИ с частотой более 10 ГГц; ЭМИ с частотой 30 МГц-10 ГГц.

Для 1-й области характерно быстрое падение величины поглощения с уменьшением частоты (приблизительно пропорционально

109

квадрату частоты). Отличительной особенностью 2-й области является очень быстрое затухание энергии ЭМИ при проникновении внутрь ткани: практически вся энергия поглощается в поверхностных слоях биоструктур. Для 3-й области, промежуточной по частоте, характерно наличие ряда максимумов поглощения, при которых тело как бы втягивает в себя поле и поглощает энергии больше, чем приходится на его поперечное сечение. В этом случае резко проявляются интерференционные явления, приводящие к возникновению локальных максимумов поглощения, так называемых «горячих пятен». Для человека условия возникновения максимумов поглощения в голове имеют место на частотах 750-2500 МГц, а максимум, обусловленный резонансом с общим размером тела, лежит в диапазоне частот 50-300 МГц.

В последнее десятилетие получила дальнейшее развитие информационная теория воздействия ЭМИ, основанная на концепции взаимодействия внешних полей с внутренними полями организма. К критическим органам и системам относят ЦНС, глаза, гонады, кроветворную систему. Описаны эффекты со стороны сердечнососудистой и ней-роэндокринной системы, иммунитета, обменных процессов. Появились данные об индуцированном влиянии ЭМИ на процессы канцерогенеза.

Биологическое действие ЭМИ зависит от длины волны (или частоты излучения), режима генерации (непрерывный, импульсный); условий воздействия на организм (постоянное, прерывистое, общее, местное, интенсивность, длительность). Отмечено, что биологическая активность ЭМИ убывает с увеличением длины волны (или снижением частоты) излучения. Наиболее активными являются метровый, санти- и дециметровый диапазоны радиоволн. Существенными различиями в количестве падающей и поглощаемой энергии объясняется меньшая биологическая активность локальных облучений частей тела (за исключением головы) по сравнению с общим воздействием.

Поражения, вызываемые ЭМИ РЧ, могут быть острыми и хрони- ческими. Острые поражения возникают при воздействии значительных тепловых интенсивностей ЭМИ. Они встречаются крайне редко -при авариях или грубых нарушениях техники безопасности. Острые поражения отличаются полисимптомностью нарушений со стороны различных органов и систем, при этом характерны выраженная астенизация, диэнцефальные расстройства, угнетение функции половых желез. Пострадавшие отмечают отчетливое ухудшение само- чувствия во время работы с РЛС или сразу после ее прекращения, резкую головную боль, головокружение, тошноту, повторные носовые кровотечения, нарушение сна. Эти явления сопровождаются общей слабостью, адинамией, потерей работоспособности, обморочными состояниями, неустойчивостью артериального давления и

110

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]