
- •Родоначальник
- •Ученики — мнимые и подлинные
- •Последователи
- •Днк крупным планом
- •Образец упаковки молекулярных структур в клетке
- •Главный секрет — упаковка
- •Порядок хаоса
- •Утраченные иллюзии и крепнущий оптимизм
- •Хронология «днк-логии»
- •Порядок хаоса
- •Утраченные иллюзии и крепнущий оптимизм
- •Хронология «днк-логии»
- •Главная цель - клетка
- •И что же это значит?
- •Расширяя понимание природы
- •Что сулит миру наукоемкое сельское хозяйство?
- •Чего ждать от биотехнологии
- •Устоим ли против невежественных фанатиков?
- •Заключение
- •Об авторе
- •Зачем нам трансгенные растения
- •Накануне больших перемен
- •Генная инженерия и биоразнообразие
- •Что сделано
- •Что дальше
- •Проблемы внедрения
- •Ответственность перед обществом
- •«Золотой миллиард» или «золотой» рис?
- •Экскурс в историю и клеточную биологию
- •Экскурс в медицину и социологию
- •Экскурс в футурологию и этику
- •О еде и окружающей среде
- •Колорадский жук предпочитает не Колорадо, а Россию
- •Соя и хлопчатник
- •О «безопасности» и «экологической чистоте»
- •Перенос переносу рознь
- •Природные механизмы гпг
- •Гпг: опасности мнимые и подлинные
- •Бактерии и антибиотики
- •От растений — к бактериям
- •Не перенесем ли «что-нибудь» за обедом?
- •Почему же растет устойчивость к антибиотикам?
- •Могут ли обмениваться свойствами далекие виды?
- •«Горизонтальный» перенос — механизм эволюции
- •Паразитирование как высшая форма адаптации
- •«Вседозволенность» вирусного переноса
- •Ограничения все-таки есть
- •«Горизонтальный» перенос в эволюции
- •Эффективное средство биотехнологии
- •Почему об этом надо знать
- •Как бактерия «обманывает» растения, а ученые — бактерию
- •Как это выглядит на практике j
- •Стимул — трудности
- •Пушки вместо бактерий
- •Три «поколения» трансгенных растений
- •Основные трансгенные культуры в 2003 г. (% от общей площади посевов)
- •«Золотой» рис — манна земная
- •Что родится в дискуссии?
- •Доводы «против»
- •Мнение специалистов
- •: Общая позиция
- •Зачем все это
- •Надо набраться терпения
- •Что ж, вернемся к основной теме разговора. Итак, в борьб с органическими загрязнителями мы можем рассчитывать на по мощь наших друзей-микробов. Как же все это выглядит на прагс тике?
- •Их тоже запахивают в почву?
- •В заключение — несколько слов о проблемах и перспекти- I вах этого направления, вселяющего надежду на то, мы победим за- I грязнения, а не они нас.
- •Биоремедиация
- •Биодеградация
- •Носители информации
- •Эволюция генетических систем деградации ксенобиотиков
- •Интродукция биодеструкторов
- •Новый этап
- •«Шоковая терапия» для генной терапии
- •Альтернатива смерти — лечение, связанное с риском
- •«Почему» и «как» современной генетики
- •Аргументы и факты
- •Вредны ли гм-продукты?
- •Пестициды и генная инженерия
- •Распространение измененных генов
- •«Притянутые» проблемы
- •Кредо — безграмотность
- •О чем не сказано
- •Об организации общественных кампаний
- •РРавда рРопагандистов рРироды
- •Невинный грех простоты
- •Ложь во спасение
- •Великая битва с химерами
- •Рождение дьявола
- •Опасна ли генная инженерия?
- •Есть или не есть?
- •Спасет ли мир биотехнология?
- •Табак без никотина
- •Листья превратим в цветы?
- •Светящийся от жажды
- •Вакцины из гм-растений
- •Витаминный салат с крысиными генами
- •Лучше поздно, чем никогда
- •Словарь специальных терминов*
- •Часть 1. Методическое пособие для учителя. — м., 2002. 88 с. Часть 2. Рабочая тетрадь. — м., 2002. 160 с. Ббк т4.200.50
Что дальше
Итак, в мире пока распространены три типа ГМ-растений, производство которых поставлено на коммерческую основу крупными компаниями. Над чем же сейчас работают в лабораториях? Это в первую очередь достижение устойчивости растений к ряду фак-
47
торов, изменение «архитектуры» (строения) растений, изменение времени цветения и созревания, создание растений, дающих новые белки, масла, питательные вещества, модифицированный крахмал. Методами классической селекции добиться таких свойств можно было бы лишь в далеком будущем. Чтобы выделить «ответственные» за эти свойства гены и модифицировать их в требуемом направлении, нужны очень сильная фундаментальная наука и доступ к мировым коллекциям семян различных растений.
Даже в такой сложной системе, как фотосинтез, можно осуществить изменение или перестановку определенных генов, влияющих на характеристики процесса. Уже есть аргументы в пользу того, что возможно более эффективное поглощение углекислого газа растениями, в результате чего повысится и эффективность фотосинтеза. На этом пути еще предстоят фундаментальные исследования (и, хочется верить, — открытия). Есть немало и других фундаментальных проблем, например, фиксация азота растениями (мы только начинаем понимать, почему природа создает для этого столь сложные структуры).
Большое значение приобретают исследования соле- и засухоустойчивости. Почему некоторые растения неплохо себя чувствуют в таких условиях, а другие погибают? Ныне мы уже понимаем многое в физиологии и механизмах засухоустойчивости. Существуют специфические метаболические пути, которые открываются в клетках растений, находящихся на солнце, так что их метаболизм отличается от метаболизма в затененных клетках. Уже есть представления о механизмах передачи сигналов в процессах, контролирующих устойчивость к засухе, и факторах, влияющих на эту передачу. Сегодня уже ясно, что, регулируя концентрацию ионов натрия в вакуолях, можно получить засухоустойчивые растения. Немало растений при засухе полностью прекращают жизнедеятельность, но после дождя или полива возрождаются. Многие домашние и садовые растения удается оживить после высыхания. Обычно это можно проделать только раз, но в природе есть растения, которые «оживают» многократно.
Существует и другой подход к достижению засухоустойчивости. Это могло бы быть использование растений типа сорго, адаптированных к засухе. К сожалению, их продуктивность невысока. Но рис и кукуруза немногим отличаются от сорго, так как произошли от общего предка. Располагая геномами риса, пшеницы и сорго, а также образцами сорго из банков семян, можно было бы получить засухоустойчивые и продуктивные культуры.
48
I
Проблемы внедрения
Поиск и выделение генов возможны в лабораториях, но новые сорта там не вывести, ибо это требует множества повторных испытаний. Этот этап лучше всего организован в возникающих у нас на глазах научно-производственных компаниях. Получение желанного сорта с требуемыми свойствами — результат большой селекционной работы, и под силу лишь крупным компаниям, которые готовы «обслуживать» только те страны, где охраняют интеллектуальную собственность. Пренебрежение этим и нехватка инвестиций — главное препятствие для разработки и внедрения новых сортов во многих странах. Так что пока эти технологии недоступны для большинства развивающихся стран, которым они так нужны. Отдельные исключения (например, выведение устойчивых к вирусам сортов папайи в Таиланде) лишь подчеркивают серьезность проблемы.
Развивающиеся страны, где голодают сотни миллионов людей, особенно нуждаются в повышении качества пищи. Например, в бобовых растениях, выращиваемых повсеместно, не хватает некоторых серосодержащих аминокислот, в том числе метионина. Сейчас предпринимаются активные попытки повысить концентрацию метионина в бобовых растениях. В ГМ-растениях удается на 25% увеличить содержание запасного белка (это сделано пока для некоторых сортов фасоли). В такой белок мы смогли ввести 12 разновидностей метионинов, которых там прежде не было. Другой пример — обогащенный бета-каротином «золотой» рис, полученный профессором Потрикусом из Технического университета в Цюрихе. Пока работа завершена для лабораторной линии, но если удастся получить промышленный сорт, это будет выдающимся достижением. Предпринимаются также попытки обогатить рис витамином Вв, недостаток которого ведет к малокровию и другим заболеваниям.