- •1.1. Образование проекций
- •1.1.1. Центральное и параллельное проецирование
- •1.1.2. Прямоугольное (ортогональное) проецирование
- •1.2. Задание отрезков прямых на чертеже
- •1.2.1. Прямые общего и частного положения
- •1.2.2. Взаимное положение прямых
- •1.2.3. Определение видимости точек на чертеже
- •1.2.4. Следы прямой
- •1.3. Задание плоскости на чертеже
- •1.3.1. Плоскости общего и частного положения. Следы плоскости.
- •1.3.2. Принадлежность прямой и точки к плоскости.
- •1.3.3. Главные линии плоскости.
- •2. Способы преобразования прямоугольных проекций
- •2.1. Способ замены плоскостей проекций
- •2.1.1. Преобразование прямой общего положения в прямую уровня и в проецирующую прямую
- •2.1.2. Преобразование плоскости общего положения в проецирующую и в плоскость уровня
- •2.2 Способ вращения
- •2.2.1. Вращение вокруг осей, расположенных перпендикулярно к плоскости проекций
- •2.2.2. Вращение вокруг осей, расположенных параллельно плоскости проекций
- •3. Поверхности
- •3.1. Многогранники
- •3.1.1. Определение видимости ребер многогранника
- •3.1.2. Принадлежность точки к поверхности многогранника
- •3.2. Поверхности вращения. Главные линии поверхности. Принадлежность точки к поверхности
- •3.3 Линейчатые поверхности. Принадлежность линии и точки к поверхности
- •4. Позиционные задачи
- •4.1. Пересечение плоскости с поверхностью.
- •4.1.1. Пересечение поверхности проецирующей плоскостью
- •4.1.2. Пересечение поверхности плоскостью общего положения
- •4.2. Пересечение прямой линии с плоскостью. Взаимное пересечение плоскостей
- •4.2.1. Пересечение прямой общего положения и плоскости общего положения с проецирующей плоскостью
- •4.2.2. Пересечение прямой общего положения с плоскостью общего положения
- •4.2.3. Взаимное пересечение плоскостей общего положения
- •4.3. Пересечение прямой линии общего положения с поверхностями
- •4. 4. Взаимное пересечение поверхностей
- •4.4.1. Способ вспомогательных секущих плоскостей
- •4.4.2. Способ вспомогательных сфер
- •5. Метрические задачи
- •5.1. Определение расстояний
- •5.1.1. Взаимно перпендикулярные прямые
- •5.1.2. Взаимно перпендикулярные прямая и плоскость
- •5.1.3. Взаимно перпендикулярные плоскости
- •5.1.4. Определение расстояний между двумя точками
- •5.1.5. Определение натуральной величины отрезка прямой общего положения и углов его наклона к плоскостям проекций способом прямоугольного треугольника
- •5.1.6. Определение расстояний между точкой и прямой
- •5.1.7. Определение расстояний между точкой и плоскостью
- •5.1.8. Определение расстояний между скрещивающимися прямыми
- •5.2. Определение углов
- •5.2.1. Определение углов между двумя пересекающимися прямыми
- •5.2.2. Определение углов между двумя скрещивающимися прямыми
- •5.2.3. Определение углов между прямой общего положения и плоскостью общего положения
- •5.2.4. Определение углов между двумя плоскостями
- •6. Развертка поверхностей
- •6.1. Развертывание поверхностей по способу триангуляции (треугольников)
- •6.1.1. Развертка пирамиды
- •6.1.2. Развертка конической поверхности
- •6.2. Развертывание поверхностей по способу нормального сечения
- •6.2.1. Развертка призмы
- •6.2.2. Развертка цилиндрической поверхности
- •7. Аксонометрические проекции
- •Вопросы для подготовки к экзаменам по Начертательной геометрии и Инженерной графике (Знать с обязательным приведением примеров - чертежей)
- •Уметь (по заданным исходным чертежам):
- •Тема 10
- •1. Конструкторская документация
- •1.1. Основные положения
- •1.2. Виды конструкторских документов
- •1.3. Стадии разработки
- •Тема 11
- •2. Общие правила выполнения четртежей
- •2 .1. Форматы
- •2.2. Масштабы
- •2.3. Линии
- •2.4. Шрифты чертежные
- •Применение шрифта 1,8 не рекомендуется и допускается только для типа б.
- •2.5. Основные надписи
- •Тема 12
- •3. Изображения. Виды, разрезы, сечения.
- •3. 1. Виды
- •3.1.1. Основные виды
- •3.1.2. Дополнительные виды
- •3.1.3. Местные виды
- •3.2. Разрезы
- •3.2.1. Разновидности разрезов
- •3.2.2. Совмещение части вида и части разреза
- •3.3. Сечения
- •3.4. Выносные элементы
- •3.5. Условности и упрощения
- •Тема 13
- •4. Нанесение размеров
- •4.1. Размерные числа
- •4.2. Размеры радиусов, диаметров, квадратов
- •4.3. Конусность, уклоны, фаски
- •4.4. Размеры нескольких одинаковых элементов
- •Тема 14
- •5. Обозначения графические материалов и правила их нанесения на чертежах
- •5.1. Обозначения графические материалов в сечениях
- •5.2. Обозначения графические материалов на видах
- •5.3. Правила нанесения штриховки на чертежах
- •Тема 15
- •6. Соединения деталей
- •6.1. Разъемные соединения
- •6.1.1. Образование и виды резьбы
- •6.1.2. Изображение резьбы
- •6.1.3. Изображение резьбового соединения
- •6.1.4. Обозначение резьбы
- •6.1.5. Изображения упрощенные и условные крепежных деталей
- •6.1.6. Изображения упрощенные и условные крепежных деталей в соединениях
- •6.1.7. Соединение шпоночное
- •6.1.8. Соединение штифтами
- •6.1.9. Соединения шплинтами
- •6.2 Неразъемные соединения
- •6.2.1. Изображение швов сварных соединений
- •6.2.2. Условное обозначение сварных соединений
- •6.2.3. Упрощенное обозначение швов сварных соединений
- •6.2.4. Примеры условных обозначений швов сварных соединений
- •6.3. Условные изображения и обозначения заклепочных соединений
- •6.4. Условные изображения и обозначения паяных и клеевых соединений
- •6.5. Специальные соединения деталей
- •6.5.1. Зубчатые передачи
- •6.5.2. Пружины
- •Тема 16
- •7. Шероховатость поверхностей
- •7.1. Обозначение шероховатости поверхностей на рабочих чертежах
- •7.2. Правила нанесения шероховатости поверхностей на чертежах
- •Тема 17
- •8. Рабочие чертежи деталей
- •Тема 18
- •9. Текстовые документы
- •Тема 19
- •10. Аксонометрические проекции
- •Тема 20
- •11. Компьютерная инженерная графика
- •11.1. Геометрическое моделирование
- •11.2. Цвет
- •11.2.1. Аддитивная цветовая модель rgb
- •11.2.2. Цветовая модель cmy
- •11.3. Растровая и векторная графика
- •11.4. Форматы графических файлов
- •11.5. Применение графических систем для выполнения и редактирования изображений и чертежей
3. Поверхности
Мир поверхностей разнообразен и безграничен. Он простирается от простейшей поверхности – плоскости, до сложнейших, причудливых форм криволинейных поверхностей, не поддающихся точному математическому описанию. Под поверхностью мы будем понимать границу материального тела, не имеющую третьего измерения – толщины. Поверхность можно задать следующими способами: аналитическим; кинематическим; каркасным.
Аналитический способ задания поверхностей рассматривается в соответствующих разделах курса высшей математики. Под кинематическим способом задания поверхностей подразумевается «след» непрерывно перемещающейся линии в пространстве по определенному закону. Закон движения перемещающейся линии – образующей, может определять другая линия (или линии) – направляющая. При этом подразумевается, что образующая скользит по направляющей.
Каркасный способ задания поверхности упрощенно можно представить как набор линий – продольных и поперечных.
Кинематический способ задания поверхности подводит к понятию определителя поверхности, который состоит из двух частей: геометрической и алгоритмической. Геометрическая часть определяет вид и способ задания образующей и направляющей. Алгоритмическая часть определяет закон движения образующей.
3.1. Многогранники
В определении понятия многогранники существует несколько суждений. Рассматривая заданиеповерхности многогранника с позиций кинематического способа, можно сказать следующее. Движение прямолинейной образующей по ломаной направляющей образует гранную поверхность. Если образующая движется по направляющей «параллельно самой себе», поверхность называется призматической. Если одна точка образующей закреплена неподвижно – поверхность называется пирамидальной. [2, стр. 62]
В некоторых учебниках вместо поверхности многогранников рассматривается геометрическое тело, ограниченное со всех сторон плоскими многоугольниками [8, стр. 105]. Плоские многоугольники, ограничивающие многогранник, являются его гранями, а линии пересечения граней – его ребрами.
3.1.1. Определение видимости ребер многогранника
Прежде, чем решать задачи с многогранниками, необходимо определить видимость ребер.
На рис. 3.1. задана трехгранная пирамида SABC. Для определения видимости ребер AS и BC на горизонтальной плоскости проекций воспользуемся горизонтально конкурирующими точками (их проекциями) 1' = 2' . Пусть 1 принадлежит ребру AS а 2 принадлежит BC. Перенесем точки на фронтальную плоскость и по направлению стрелки отмечаем, что точка 1 расположена выше точки 2, следовательно, на горизонтальной проекции ребро AS будет видимым. Аналогично определяется видимость ребер для фронтальной плоскости. На рис. 3.2 выполнено построение пирамиды с учетом видимости ребер.


3.1.2. Принадлежность точки к поверхности многогранника
Все грани многогранников представляют собой плоскости, поэтому для построения прямых и точек, принадлежащих граням поверхности, необходимо воспользоваться решением, рассмотренным в теме 1.3.2., рис. 1.23 - принадлежность точки к плоскости.
