Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Пименов Ю.В., Муравцов А.Д. Техническая электродинамика, 2000

.pdf
Скачиваний:
3657
Добавлен:
11.03.2016
Размер:
14.18 Mб
Скачать

При λ> λкр волна не распространяется: образуется стоячая волна, амплитуды составляющих векторов Е и Н которой экспоненциально убывают вдоль оси Z (в этом

случае Напомним, что анализ проводится в предположении отсутствия потерь.

10.1.2. Основная волна прямоугольного волновода

Свойства волны. Как уже отмечалось, при а> b основной волной прямоугольного волновода является волна Н10. Она имеет наибольшую критическую длину волны, равную 2а. На заданной частоте размеры поперечного сечения волновода, при которых возможна передача энергии по прямоугольному волноводу, для этой волны можно выбрать наименьшими. При этом волновод будет иметь наименьшие массу, габариты и стоимость. Полагая в (10.17) т=1 и n = 0 и учитывая формулы (10.16), получаем следующие выражения для составляющих комплексных амплитуд векторов Е и Н в случае волны Н10:

Структура поля волны H10, построенная в соответствии с формулами (10.18), показана на рис.10.3 и 10.6. Остановимся на картине распределения поля волны H10 в плоскостях, параллельных широким стенкам волновода.

Согласно уравнениям Максвелла замкнутые линии магнитного поля должны охватывать токи проводимости или токи смещения. В волноводе замкнутые линии магнитного поля пронизываются токами смещения. В случае волны Н10 (см. рис. 10.6) линии магнитного поля охватывают токи смещения, текущие между широкими стенками параллельно оси Y. В распространяющейся волне максимальная плотность тока смещения получается в центре замкнутых магнитных силовых -линий, где напряженность электрического поля равна нулю.

221

Это следует из того, что вектор плотности тока смещения и, следовательно, сдвинут по фазе относительно вектора напряженности электрического поля на угол π/2, т.е. расстояние между максимумом плотности тока смещения и максимумом напряженности электрического поля вдоль оси Z в фиксированный момент времени равно Λ/4.

Фазовая скорость Vф, скорость распространения энергии VЭ, длина волны в волноводе Λ и характеристическое сопротивление Zc в случае волны Н10 вычисляются по формулам

В соответствии с концепцией Бриллюэна (см. гл.9) представим волну Н10 в виде суперпозиции парциальных ТЕМ-волн.

Поле волны Н10 не зависит от переменной у. Следовательно, поля парциальных волн также не должны зависеть от у, т.е. парциальные ТЕМ-волны должны распространяться, отражаясь от боковых (х = 0 и х = а) стенок волновода.

Пусть парциальная волна распространяется под углом ф к оси Z (волна 1 на рис.10.7). Комплексная амплитуда вектора напряженности электрического поля этой волны Ёт1 определяется выражением

где А - некоторая (в общем случае комплексная) постоянная. Электрическое поле волны Н10 имеет пучность на плоскости х = а/2 и симметрично относительно этой плоскости. Поэтому кроме волны (10.20) должна существовать еще одна парциальная ТЕМ-волна (волна 2), распространяющаяся, как показано на рис.10.7. Комплексная амплитуда

напряженности электрического поля этой волны равна Для

222

образования пучности электрического поля в плоскости х = а/2 необходимо, чтобы векторы Ёт1 и Ёт2 при х = а/2 складывались синфазно. Для этого достаточно, например, чтобы фаза вектора Ёт2 в точке (а, 0, 0) совпадала с фазой вектора Ёт1 в точке (0, 0, 0). С учетом данного условия вектор

Для определения угла ф учтем, что на поперечном размере а широкой стенки волновода должна укладываться половина длины волны λх, а на отрезке ОА - половина длины волны ТЕМ (λI2). Из треугольника ОАВ (см. рис. 10.8) следует равенство

Полученный результат отличается от выражения для Ёту в формуле (10.17) лишь постоянным коэффициентом, что несущественно, так как формулы (10.17) были найдены с точностью до произвольного постоянного множителя. Аналогично вычисляются составляющие Нтх и Hmz. Они отличаются от соответствующих выражений в (10.17) лишь тем же постоянным множителем.

Из рис. 10.8 и формулы (10.21) видно, что по мере повышения частоты (уменьшения X) уменьшается угол ф и, следовательно, тем меньше по абсолютной векличине становится продольная составляющая Hmz по сравнению с поперечной составляющей

Нтх, т.е. структура волны Н10 начинает приближаться к структуре волны ТЕМ.

Одновременно, как следует из (10.19), уменьшается разница между и с. Аналогично можно интерпретировать и другие типы волн в прямоугольном волноводе.

10.1.3. Токи на стенках прямоугольного волновода

Каждому типу волны, распространяющейся в волноводе, соответствует определенная структура токов проводимости на его стенках. В случае идеально проводящих стенок токи проводимости являются поверхностными, а комплексная амплитуда их плотности

jSm вычисляется по формуле

223

Распределение составляющих плотности токов проводимости по контуру Г и структура линий вектора js на стенках волновода для волны Н10 показаны на рис. 10.9 и 10.10 соответственно. В случае волны Е11 по стенкам волновода текут только продольные токи

(рис. 10.11).

10.1.4. Выбор размеров поперечного сечения прямоугольного волновода из условия одноволновой передачи

Как было показано выше, в прямоугольном волноводе возможно существование бесконечного числа типов волн, отличающихся друг от друга структурой электрического и магнитного полей, критическими частотами, фазовой скоростью и другими параметрами. Однако при конструировании линий передачи обычно принимают все меры к тому, чтобы энергия переносилась каким-либо одним типом волны. Объясняется это тем, что различным типам волн соответствуют различные групповые скорости. Поэтому при передаче сигнала несколькими типами волн один и тот же сигнал приходит в точку приема в виде нескольких смещенных во времени сигналов, что приводит к его искажению и увеличению уровня шумов. Характер искажений зависит от способа модуляции, вида и скорости передаваемой информации и других факторов.

Передачу энергии одним типом волны наиболее просто обеспечить, если в качестве этого типа использовать основную волну, имеющую наибольшую λкр. Для этого достаточно так выбрать поперечные размеры линии, чтобы на любой частоте рабочего диапазона длина волны электромагнитных колебаний не превышала критической длины основной волны (λкр (1)), но была больше критической длины волны первого высшего типа (λкр(2) ).Такой режим называют одноволновым. Полосу частот, в пределах которой сохраняется одноволновый режим, обычно характеризуют коэффициентом широкополосности

224

Частотный диапазон использования прямоугольных волноводов, охватывающий частоты от 400 МГц до 140 ГГц, в соответствии с рекомендацией Международной электротехнической комиссии разбит на 28 поддиапазонов, частично перекрывающих друг друга, и для каждого поддиапазона рекомендованы стандартные размеры волновода [33]. На частотах порядка 500 МГц и ниже прямоугольные волноводы применяются редко из-за значительных габаритов и массы. Например, отрезок волновода из алюминия длиной 1 м при размерах поперечного сечения 457x228,5 мм (λо= 60 см) и с толщиной стенок 3 мм имеет массу около 11 кг, а медный того же сечения и с той же толщиной стенок - около 36 кг.

10.1.5. Передача энергии по прямоугольному волноводу

Мощность бегущей волны (см.9.7.1) вычисляется по формуле (9.46). В случае волны /-/10 из формул (9.46) и (10.17) получаем

где Е0= (ωμa/π)Нoz- амплитудное значение напряженности электрического поля волны Н10. При выводе формулы (10.26) учтено, что ωμ = kZc. При стандартных размерах волновода (а = 0,75λ, b = 0,5а), подставляя предельное значение Ео= 30 кВ/см, находим, что предельная мощность волны Н10 равна PnpeдH10 = 125λ2кВт, где длина волны выражена в

сантиметрах. Например, при λ = 30 см предельная мощность РпредН10 =112 МВт. Соответственно допустимая мощность (см.9.7.1) Рдопн10 =28 МВт. Как видно, в

дециметровом диапазоне по прямоугольному волноводу стандартного сечения можно передавать весьма значительную мощность. Однако по мере повышения частоты допустимая мощность быстро уменьшается и при λ = 1 см не превышает 30...45 кВт.

Когда методы повышения электрической прочности, указанные в 9.7.2, почему-либо неприемлемы, то, как следует из формулы (10.26), предельную мощность можно существенно повысить, увеличив площадь поперечного сечения волновода по сравнению со стандартными.

Если размеры волновода увеличены настолько, что в части или во всем рабочем диапазоне волновод оказывается в многоволновом режиме, то необходимо принять специальные меры для предотвращения распространения всех типов волн, кроме Н10 (см. 13.2).

Коэффициент ослабления αм, обусловленный потерями энергии в металлических стенках волновода, вычисляется по формуле (9.49) с учетом (9.46) и (9.54). Ограничимся вычислением αм для волны Н10. Подставляя (10.18) в (9.46) и (9.54), находим значения Рср

225

и Рп ср соответственно. Подставляя затем полученные выражения в (9.49), после несложных преобразований имеем

Аналогично выводятся формулы для коэффициентов ослабления, соответствующих другим типам волн. Расчеты показывают, что наименьшие потери в прямоугольном волноводе имеют место при передаче энергии волной Н10. На рис.10.12 показаны графики зависимости коэффициента ослабления αм (в дБ/км) от частоты для волн Н10, Е11 И Н20 в случае медного волновода при а = 51 мм и b = 25 мм. Как видно из приведенных графиков, потери энергии в волноводе резко возрастают при приближении частоты к критической.

Это свойство, характерное для всех металлических волноводов, легко объясняется на основе концепции парциальных волн. Действительно, у Е- и Н-волн парциальные волны распространяются по ломаным линиям, многократно отражаясь от поверхности металлических стенок. На частотах, близких к критической, угол падения парциальных волн на металлическую поверхность мало отличается от нулевого (угол ф на рис. 10.7 близок к π/2). Но чем ближе угол падения к нулю, тем большее число отражений испытывают парциальные волны при своем движении на некотором отрезке линии. При каждом отражении часть энергии электромагнитной волны теряется из-за неидеальной проводимости металла (появляется преломленная волна). Поэтому потери в проводниках линии, перенос энергии по которым осуществляется Е- и Н-волнами, растут по мере приближения . к критической частоте. Вслед за резким падением затухания при удалении от критической частоты (рис.10.12) снова начинается его монотонное возрастание, вызванное увеличением поверхностного сопротивления металла Rs с ростом частоты.

Отметим, что, как следует из формулы (10.27), в. коротковолновой части сантиметрового диапазона потери в стандартных волноводах весьма велики. Например, при λ = λ0=0,01 м в

стандартном волноводе с медными стенками = 0,55 дБ/м, т.е. при длине линии всего 10 м потери энергии будут составлять 5,5 дБ (более 70 %

входящей мощности). Объясняется это тем, что при заданной мощности уменьшение поперечных размеров волновода сопровождается возрастанием плотности поверхностного тока проводимости в его стенках и соответственно возрастают потери. Поэтому на волнах порядка 1 см и короче применение прямоугольных волноводов целесообразно только в виде коротких отрезков. В некоторых случаях, чтобы уменьшить потери, размеры поперечного сечения волновода увеличивают по сравнению со стандартными.

10.2. КРУГЛЫЙ ВОЛНОВОД 10.2.1. Вывод формул для поля

226

При анализе волн в круглом волноводе (рис. 10.13) будем считать, что заполняющая его среда - идеальный диэлектрик с параметрами ε и μ, а оболочка обладает бесконечной проводимостью. В таком волноводе возможно раздельное существование Е- и /-/-волн и невозможно существование ТЕМ-волн (см. 9.4). При анализе естественно использовать цилиндрическую систему координат, совместив ось Z с продольной

а штрих означает дифференцирование функции Бесселя по всему аргументу.

Так же как в формулах для поля в прямоугольном волноводе, индекс т в формулах (10.32а) и (10.326) имеет разный смысл. В (10.32а) он означает, что записана комплексная амплитуда рассматриваемой функции, а в (10.326) т- определяет порядок функции Бесселя.

Входящая в (10.326) постоянная ф0 влияет только на начало отсчета угла φ, ее изменение соответствует повороту структуры поля вокруг оси Z. В рамках используемой физикоматематической модели постоянные EOz и φ0 определить нельзя. Для их нахождения

227

требуются дополнительные данные об источнике, создающем поле в волноводе (о мощности бегущей волны, ориентации вектора γи т.д.). Аналогичный вопрос обсуждался ранее при анализе формул (10.16) и (10.17).

Чтобы найти неизвестную постоянную ух, используем граничное условие (1.104). В рассматриваемом случае из него следует равенство

где а - радиус волновода (см. рис. 10.13). Подставляя выражение для Еz°( r, φ,) из (10.326) в (10.33), получаем

Jm a) =0 (10.34)

Имеется бесконечное множество значений аргумента, при которых функция Бесселя равна нулю. Эти значения называют корнями функции Бесселя. Обозначая n-й корень функции Бесселя m-го порядка через vmnE (см. рис.10.14), из (10.34) находим

Параметр β вычисляется по формуле (9.14).

Как видно, в круглом волноводе возможно существование Е-волн различной структуры. Наименование этих волн производится в соответствии с обозначением корней уравнения

{10.34). Например, корню соответствует волна Е01 корню v12Е -волна Е12, корню vmnЕ -

волна Етп.

Зависимость структуры поля волны от угла φ определяется индексом т. Поперечное сечение волновода можно условно разделить на т секторов с одинаковой структурой поля в каждом секторе: поле волны периодично по углу φ с периодом 2π/m. Индекс т, таким образом, равен числу периодов структуры поля волны, укладывающихся на интервале [0, 2π] изменения угла φ. Равенство нулю индекса т означает, что структура поля волны обладает осевой симметрией (не зависит от угла φ).

На распределение составляющих векторов поля вдоль радиуса в интервале [0, а] влияют оба индекса т и п. При этом т определяет порядок функции Бесселя, а п-число вариаций составляющих векторов поля при изменении г от 0 до а: при /7=1 составляющие векторов поля не изменяют знак (одна вариация), при л = 2 они один раз изменяют знак (две вариации) и т.д.

Каждому типу волны соответствует своя критическая длина волны, связанная с постоянной ух соотношением (10.33). В рассматриваемом случае

228

Несколько первых корней функций Бесселя vmnE в порядке их возрастания и соответствующие критические длины волн, рассчитанные по формуле (10.36), приведены в табл. 10.1. Низшим типом среди волн Е в круглом волноводе является волна Е01-

Фазовая скорость, скорость распространения энергии, длина волны в волноводе и характеристическое сопротивление рассчитываются по формулам (9.18), (9.43), (9.17) и (9.21) соответственно. На рис. 10.15 показана структура поля волны Е01.

229

Как видно, в круглом волноводе возможно существование Н-волн различной структуры, которые принято обозначать Нтп. Нумерация Н-волн аналогична нумерации волн Етп. Индекс т совпадает с порядком функции Бесселя, а n-с номером нуля первой производной функции Бесселя т-го порядка. Так же как и в случае E-волн, структура поля волны Нтп периодична по углу ср с периодом 2π/m, т.е. индекс т равен числу периодов структуры поля волны Нтп, укладывающихся на интервале [0, 2π] изменения угла φ. Равенство нулю индекса т означает, что поле волны не зависит от угла φ. Индекс л равен числу вариаций составляющих векторов поля вдоль радиуса волновода.

Несколько первых корней vmnH в порядке их возрастания и соответствующие им критические длины волн, рассчитанные по формуле

приведены в табл. 10.2. Низшим типом среди не только волн Н, но и всех волн в круглом волноводе, как следует из табл. 10.1 и 10.2, является волна НЦ. Интересно отметить, что структура поля этой волны (рис. 10.16) близка к структуре поля волны Н10 в прямоугольном волноводе (см. рис. 10.3), также имеющей наибольшую критическую длину волны. На рис. 10.17 показана структура поля волны Н01.

Параметры H-волн β, vф, vЭ и Λ вычисляются по формулам (9.14), (9.18), (9.43) и (9.17) соответственно, а характеристическое сопротивление находится по формуле (9.26).

10.2.2. Токи на стенках круглого волновода

Плотность токов на стенках круглого волновода jSm в соответствии с граничным условием (1.110) определяется формулой

230