
- •Міністерство освіти і науки,
- •Правила оформлення контрольної роботи
- •1. Елементи лінійної алгебри
- •1.1. Матриці та дії над ними
- •Дії над матрицями
- •Основні властивості множення матриці на число
- •Основні властивості додавання та віднімання матриць
- •Основні властивості множення матриць
- •Основні властивості транспонування матриці
- •1.2. Визначники та способи їх обчислення
- •Основні властивості визначників
- •Алгоритм обчислення оберненої матриці
- •Властивості обертання невироджених матриць
- •1.3. Системи лінійних рівнянь
- •Елементарні перетворення системи лінійних рівнянь
- •Метод Крамера
- •Метод оберненої матриці
- •Метод Гаусса
- •Алгоритм прямого ходу методу Гаусса
- •2. Елементи аналітичної геометрії
- •2.1. Векторна алгебра
- •Дії над векторами
- •Властивості лінійних операцій над векторами
- •Основні властивості проекцій
- •Дії над векторами в координатній формі
- •Скалярний добуток векторів
- •Основні властивості скалярного добутку векторів
- •Векторний добуток векторів
- •Основні властивості векторного добутку векторів
- •Мішаний добуток векторів
- •Основні властивості мішаного добутку векторів
- •2.2. Пряма на площині
- •Умови взаємного розташування на площині точок і прямих
- •Контрольні питання зі змістового модуля I
- •3. Границя числової послідовності та функції. ОСновні пОняття
- •3.1. Функціональна залежність. Огляд основних елементарних функцій
- •3.2. Границя послідовності та її властивості
- •Основні теореми про послідовності, що збігаються
- •3.3. Нескінченно малі та нескінченно великі послідовності
- •Властивості нескінченно малих послідовностей
- •Властивості нескінченно великих послідовностей
- •Зв’язок між нескінченно великими і нескінченно малими послідовностями
- •3.4. Границя функції та її властивості
- •Односторонні границі функції
- •4. Обчислення границь
- •4.1. Методи розкриття невизначеностей
- •4.2. Визначні границі
- •4.3. Порівняння нескінченно малих функцій
- •Основні еквівалентності при
- •5. Неперервність функції
- •5.1. Неперервність функції в точці і на відрізку
- •Властивості функцій, які неперервні в точці
- •Властивості функцій, що неперервні на відрізку
- •5.2. Класифікація точок розриву
- •Контрольні питання зі змістового модуля II
- •6. Похідна функції однієї змінної
- •6.1. Диференційованість функції однієї змінної. Правила обчислення похідних
- •Правило знаходження похідної
- •Основні властивості похідної
- •6.2. Таблиця похідних основних елементарних функцій. Похідні вищих порядків
- •3 (Куб), ,,,.
- •6.3. Похідні функцій, заданих у параметричній, неявній формах, логарифмічне диференціювання
- •6.4. Диференціал функції однієї змінної
- •7. Диференційованість функції багатьох змінних
- •7.1. Частинні похідні та повний диференціал
- •Повний диференціал першого порядку
- •7.2. Похідна неявної, складної функції. Похідна за напрямом
- •Контрольні питання зі змістового модуля III
3. Границя числової послідовності та функції. ОСновні пОняття
3.1. Функціональна залежність. Огляд основних елементарних функцій
В курсі вищої математики розглядають досить важливі властивості функцій, які складно досліджувати елементарними способами. У основі методів, за допомогою яких доцільно досліджувати ці нові властивості, лежить поняття границі функції, одне з фундаментальних понять сучасної математики.
|
Функцією
|
|
Незалежну
змінну x
називають
аргументом,
а величину у
–
функцією.
Множину D
називають
областю
визначення функції
і позначають
|
|
Функцію
Функцію
|
У
інших випадках функцію
називаютьфункцією
загального вигляду.
Графік парної функції є симетричним
відносно осі ординат, графік непарної
функції є симетричним відносно початку
координат.
|
Функцію
Функцію
Зростаючі і спадаючі функції називають монотонними. |
|
Функцію
|
|
Нехай
|
Основними елементарними функціями є:
Степенева
функція
.
Для
будь-якого а
область
визначення
функції містить додатну піввісь
.
Точка
включається в область визначення при
і виключається при
.
Від’ємна піввісь
міститься в області визначення в окремих
випадках (наприклад, при
;
).
Показникова
функція
(
,
).
Область
визначення функції
.
Логарифмічна
функція
(
,
).
Область
визначення функції
.
Тригонометричні
функції
,
.
Функції
,
мають
область визначення
.
Обернені
тригонометричні функції
,
,
,
.
Областю
визначення функцій
,
є
,
а областю визначення функцій
,
є
|
Функцію
|