
- •Министерство образования и науки украины
- •Содержание
- •Пояснительная записка
- •Структура курса
- •Модуль 1. Множества
- •Тема 1. Множества и операции над ними
- •Введение
- •1. Понятие множества и элемента множества
- •2.Способы задания множества
- •3. Отношения между множествами. Подмножество
- •Примеры
- •4. Круги Эйлера-Венна
- •Практическая работа. Понятие множества
- •Тема 2. Операции над множествами
- •1. Пересечение множеств
- •2. Объединение множеств
- •3. Законы пересечения и объединения множеств
- •Определение. Для любых множеств а, в и с выполняются равенства:
- •4. Вычитание множеств. Дополнение подмножества
- •Практическая работа. Операции над множествами
- •Вопросы к изучению
- •Основные понятия
- •Обозначения
- •Практическая часть
- •Тема 2.1. Понятие разбиения множества на классы
- •1. Понятие разбиения множества на классы
- •Практическая работа. Разбиение множества на классы
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 2.2. Декартово произведение множеств
- •1. Декартово произведение множеств
- •2. Свойства операции нахождения декартова произведения
- •3. Кортеж. Длина кортежа
- •Практическая работа. Декартово произведение
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 3. Понятие соответствия Содержание
- •1. Понятие соответствия между множествами
- •Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- •2. Способы задания соответствий
- •3. Соответствие обратное данному
- •4. Взаимно однозначные соответствия
- •5. Равномощные множества
- •Практическая работа. Соответствия между двумя множествами
- •Тема 4. Числовые функции
- •1. Понятие функции. Способы задания функций
- •2. Прямая и обратная пропорциональности
- •Основные понятия темы
- •Основные выводы, замечания
- •Тема 5. Отношения на множестве
- •1. Понятие отношения между элементами одного множества
- •2. Способы задания отношений
- •3. Свойства бинарных отношений
- •Практическая работа. Отношения на множестве
- •Тема 6. Выражение. Уравнение. Неравенство
- •Выражения и их тождественные преобразования.
- •1. Выражения и их тождественные преобразования
- •3. Уравнения с одной переменной
- •4. Неравенства с одной переменной
- •Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- •Практическая работа. Уравнения и неравенства с одной переменной.
- •Контрольная (зачетная) работа
- •Модуль 2. Математические утверждения и их структура
- •Тема 7. Математические понятия Содержание
- •1. Математические понятия. Объем и содержание понятия
- •Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- •2. Отношение рода и вида между понятиями
- •4. Требования к определению понятий
- •5. Неявные определения
- •Практическая работа. Математические понятия
- •Вопросы к изучению
- •Представления о математических понятиях -
- •Обозначения
- •Тема 8. Высказывания и высказывательные формы
- •2. Конъюнкция и дизъюнкция высказываний
- •3. Конъюнкция и дизъюнкция высказывательных форм
- •Практическая работа. Высказывания и высказывательные формы
- •Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- •1. Высказывания с кванторами
- •2. Истинность высказываний с кванторами
- •3. Отрицание высказываний и высказывательных форм
- •Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- •Тема 8.2. Отношения следования и равносильности между предложениями
- •1. Отношения следования между предложениями
- •2. Отношения равносильности между предложениями
- •Практическая работа. Отношения следования и равносильности между предложениями
- •Вопросы к изучению
- •Основные понятия темы
- •Обозначения
- •Тема 8.3. Структура теоремы. Виды теорем
- •1. Структура теоремы
- •2. Отличие теоремы от правила
- •3. Виды теорем
- •Практическая работа. Структура теоремы. Виды теорем
- •Тема 9. Математическое доказательство
- •1. Понятие умозаключения.
- •2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- •3. Индуктивные умозаключения. Полная индукция
- •Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- •4. Неполная индукция
- •5. Математическая индукция
- •6. Аналогия
- •7. Умозаключения «от противного»
- •8. Некоторые виды неправильных умозаключений
- •9. Логическая структура математической задачи
- •10. Закон достаточного основания и аксиоматический метод в математике
- •Практическая работа. Математическое доказательство
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 10. Текстовая задача и процесс ее решения
- •1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- •2. Структура процесса решения текстовой задачи
- •2. Методы и способы решения текстовых задач
- •3. Этапы решения задачи и приемы их выполнения
- •1. Анализ задачи
- •4. Поиск и составление плана решения задачи
- •5. Осуществление плана решения задачи
- •6. Проверка решения задачи
- •7. Моделирование в процессе решения текстовых задач
- •Практическая работа. Текстовая задача и процесс ее решения
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 11. Комбинаторные задачи и их решение
- •1. Комбинаторика
- •2. Правила суммы и произведения
- •3. Размещения и сочетания
- •Практическая работа. Комбинаторные задачи и их решение
- •Вопросы для коллоквиума
- •Модуль 3. Целые неотрицательные числа
- •Тема 12. Аксиоматическое построение системы натуральных чисел
- •1. Из истории возникновения понятия натурального числа
- •2. Об аксиоматическом способе построения теории
- •3. Основные понятия и аксиомы. Определение натурального числа
- •4. Количественные натуральные числа. Счет
- •Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- •Вопросы для самоконтроля
- •Задания для самостоятельной работы
- •Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- •1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •2. Теоретико-множественный смысл суммы
- •3. Теоретико-множественный смысл разности
- •4. Теоретико-множественный смысл произведения
- •5. Теоретико-множественный смысл частного натуральных чисел
- •Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 14. Позиционные и непозиционные системы исчисления
- •1. Позиционные и непозиционные системы счисления
- •2. Запись числа в десятичной системе счисления
- •Практическая работа. Запись целых неотрицательных чисел
- •Теоретическая часть
- •Основные понятия темы
- •Тема 15. Алгоритмы действий над целыми неотрицательными числами
- •1. Алгоритм сложения
- •2. Алгоритм вычитания
- •3. Алгоритм умножения
- •4. Алгоритм деления
- •Практическая работа. Алгоритмы арифметических действий
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 16. Отношение делимости и его свойства Содержание
- •Признаки делимости.
- •Наименьшее общее кратное и наибольший общий делитель.
- •1. Отношение делимости и его свойства
- •2. Признаки делимости
- •3. Наименьшее общее кратное и наибольший общий делитель
- •4. Простые числа
- •5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •Практическая работа. Делимость натуральных чисел
- •Тема 17. О расширении множества натуральных чисел
- •1. Понятие дроби
- •2. Положительные рациональные числа
- •3. Запись положительных рациональных чисел в виде десятичных дробей
- •4. Действительные числа
- •Практическая работа. Действия над положительными действительными числами
- •Вопросы к коллоквиуму
- •Теоретико-множественный смысл отношения «меньше», «равно»
- •Теоретико-множественный смысл суммы.
- •Теоретико-множественный смысл разности.
- •Признаки делимости.
- •Тема 18. Натуральное число как мера величины. Измерение величин
- •1. Понятие положительной скалярной величины и ее измерения
- •2. Смысл натурального числа, полученного в результате измерения величины
- •3. Смысл суммы и разности
- •Практическая работа. Понятие положительной скалярной величины
- •Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- •Теоретическая часть Вопросы к изучению
- •Определения, теоремы, выводы
- •Тема 19. Геометрические фигуры на плоскости и их свойства
- •1. Понятие геометрической фигуры
- •2. Углы
- •3. Параллельные и перпендикулярные прямые
- •4. Треугольники
- •5. Четырехугольники
- •Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- •1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- •2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- •6. Многоугольники
- •7. Окружность и круг
- •8. Построение геометрических фигур на плоскости.
- •1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- •2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- •3. Найти середину отрезка.
- •4. Построить биссектрису данного угла.
- •5. Через данную точку провести прямую, перпендикулярную данной прямой.
- •9. Преобразования геометрических фигур. Понятие преобразования
- •1. Симметрия относительно точки (центральная симметрия).
- •2. Симметрия относительно прямой (осевая симметрия).
- •3. Гомотетия.
- •10. Движения и равенство фигур
- •Практическая работа. Решение геометрических задач
- •Практическая работа. Основные задачи на построение на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 20. Изображения пространственных фигур
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •3. Шар, цилиндр, конус и их изображение
- •Практическая работа. Изображение пространственных фигур на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 21. Геометрические величины
- •1. Длина отрезка и ее измерение
- •2. Величина угла и ее измерение
- •3. Понятие площади фигуры и ее измерение
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Практическая работа. Геометрические величины
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Правила, замечания
- •Практическая часть
- •Список литературы
- •Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- •Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)
4. Вычитание множеств. Дополнение подмножества
Чтобы объяснить учащимся, что 5-3=2, часто используют такой прием. Берут 5 предметов, например, 5 кружков. После того как учащиеся убедятся при помощи счета, что кружков действительно 5, им предлагают 3 кружка убрать и сосчитать, сколько кружков осталось. Осталось 2, значит, 5-3=2.
В чем суть приема? Из данного множества, в котором а элементов, удаляют подмножество, содержащее b элементов. Тогда в оставшейся части множества а – b элементов.
Если заданы два множества, то можно не только найти их пересечение и объединение, но и вычесть из одного множества другое. Результат вычитания называют разностью и определяют следующим образом.
Определение. Разностью множеств А и В называется множество, содержащее все элементы, которые принадлежат множеству А и не принадлежат множеству В.
Разность множеств А и В обозначают А \ В. Тогда, по определению, имеем:
А \ В ={ х | х и х }.
Если
представить множества А и В при помощи
кругов Эйлера, то разностьА
\ В изобразиться
заштрихованной областью.
В школьном курсе математики чаще всего приходится выполнять вычитание множеств в случае, когда одно из них является подмножеством другого, при этом разность множеств А \ В называют дополнением множества В до множества А, и обозначают символом ВА.
При
помощи кругов Эйлера данная ситуация
представляется на рисунке, где заштрихована
та часть, которая осталась после удаления
из множества А подмножества В. Эту часть
называютдополнением
множества В до множества А.
Определение. Пусть В А. Дополнением множества В до множества А называется множество, содержащее только те элементы множества А, которые не принадлежат множеству В.
ВА ={ х| х и х }.
Дополнение множества В до множества А ( при условии, что В А) обозначают ВА = А \ В.
Операция при помощи которой находят дополнение подмножества, называется вычитанием.
Нахождение подмножества в конкретных случаях:
Если элементы множества А и В пересечены, то, чтобы найти А \ В, достаточно перечислить элементы, принадлежащие А и не принадлежащие В.
Пример. А = 1, 2, 3, 5, а 1, 5, то А \ В = 2,3.
Если указаны характеристические свойства элементов множеств А и В (ВА), характеристическое свойство множества А \ В имеет вид «х и х ».
Пример. А – множество четных чисел, В – множество чисел, кратных 4. Найти дополнение множества В до множества А. Определить, содержатся ли в этом дополнении числа 20 и 26.
Так как, все числа кратные 4, четные, то В А. Если из множества А удалить все числа, кратные 4, то в нем останутся четные числа, не кратные 4. Значит, А \ В – множество четных чисел, не кратных 4. Характеристическое свойство элементов этого множества – «быть четным числом и не кратным 4».
Нетрудно видеть, что 20 А \ В, поскольку 20 – четное число и кратно 4, а что 26 А \ В, т.к. 26 – четное число и не кратно 4.
Пример.
Выясним теперь, из каких чисел состоит
множество А \ В
С, если А – множество четных чисел, В –
множество чисел, кратных 4, С – множество
чисел, кратных 6.
В записи А \ В С нет скобок. Возникает вопрос: какое действие выполнять первым? Условились считать, что операция пересечения множеств является более «сильной», чем вычитание.
Пересечением множеств В и С состоит из чисел, кратных 4 и 6. Если удалить это пересечение из множества А, то в нем останутся четные числа, не кратные 4 и 6 (одновременно). При помощи кругов Эйлера данные множества А, В, и С можно изобразить так:
Замечание. Вычитание – это третья операция над множествами. Условимся считать, что пересечение – более «сильная» операция, чем вычитание. Поэтому порядок выполнения действий будет такой: сначала находят пересечение множеств, а затем вычитание.
Что касается объединения и вычитания множеств, то их считают равноправными.
Замечание. Вычитание множеств обладает рядом свойств. В частности, можно доказать, что для любых множеств А, В и С справедливы следующие равенства:
(А \ В) \С= (А \ С) \ В (А \ В) С= (А С) \ ( В С )
А \ (В С ) = (А \ В) ( А \ С) А \ (В С) = (А \ В) ( А \ С)
(А В) \С = (А \ С) (В \ С)