
- •Министерство образования и науки украины
- •Содержание
- •Пояснительная записка
- •Структура курса
- •Модуль 1. Множества
- •Тема 1. Множества и операции над ними
- •Введение
- •1. Понятие множества и элемента множества
- •2.Способы задания множества
- •3. Отношения между множествами. Подмножество
- •Примеры
- •4. Круги Эйлера-Венна
- •Практическая работа. Понятие множества
- •Тема 2. Операции над множествами
- •1. Пересечение множеств
- •2. Объединение множеств
- •3. Законы пересечения и объединения множеств
- •Определение. Для любых множеств а, в и с выполняются равенства:
- •4. Вычитание множеств. Дополнение подмножества
- •Практическая работа. Операции над множествами
- •Вопросы к изучению
- •Основные понятия
- •Обозначения
- •Практическая часть
- •Тема 2.1. Понятие разбиения множества на классы
- •1. Понятие разбиения множества на классы
- •Практическая работа. Разбиение множества на классы
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 2.2. Декартово произведение множеств
- •1. Декартово произведение множеств
- •2. Свойства операции нахождения декартова произведения
- •3. Кортеж. Длина кортежа
- •Практическая работа. Декартово произведение
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 3. Понятие соответствия Содержание
- •1. Понятие соответствия между множествами
- •Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- •2. Способы задания соответствий
- •3. Соответствие обратное данному
- •4. Взаимно однозначные соответствия
- •5. Равномощные множества
- •Практическая работа. Соответствия между двумя множествами
- •Тема 4. Числовые функции
- •1. Понятие функции. Способы задания функций
- •2. Прямая и обратная пропорциональности
- •Основные понятия темы
- •Основные выводы, замечания
- •Тема 5. Отношения на множестве
- •1. Понятие отношения между элементами одного множества
- •2. Способы задания отношений
- •3. Свойства бинарных отношений
- •Практическая работа. Отношения на множестве
- •Тема 6. Выражение. Уравнение. Неравенство
- •Выражения и их тождественные преобразования.
- •1. Выражения и их тождественные преобразования
- •3. Уравнения с одной переменной
- •4. Неравенства с одной переменной
- •Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- •Практическая работа. Уравнения и неравенства с одной переменной.
- •Контрольная (зачетная) работа
- •Модуль 2. Математические утверждения и их структура
- •Тема 7. Математические понятия Содержание
- •1. Математические понятия. Объем и содержание понятия
- •Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- •2. Отношение рода и вида между понятиями
- •4. Требования к определению понятий
- •5. Неявные определения
- •Практическая работа. Математические понятия
- •Вопросы к изучению
- •Представления о математических понятиях -
- •Обозначения
- •Тема 8. Высказывания и высказывательные формы
- •2. Конъюнкция и дизъюнкция высказываний
- •3. Конъюнкция и дизъюнкция высказывательных форм
- •Практическая работа. Высказывания и высказывательные формы
- •Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- •1. Высказывания с кванторами
- •2. Истинность высказываний с кванторами
- •3. Отрицание высказываний и высказывательных форм
- •Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- •Тема 8.2. Отношения следования и равносильности между предложениями
- •1. Отношения следования между предложениями
- •2. Отношения равносильности между предложениями
- •Практическая работа. Отношения следования и равносильности между предложениями
- •Вопросы к изучению
- •Основные понятия темы
- •Обозначения
- •Тема 8.3. Структура теоремы. Виды теорем
- •1. Структура теоремы
- •2. Отличие теоремы от правила
- •3. Виды теорем
- •Практическая работа. Структура теоремы. Виды теорем
- •Тема 9. Математическое доказательство
- •1. Понятие умозаключения.
- •2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- •3. Индуктивные умозаключения. Полная индукция
- •Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- •4. Неполная индукция
- •5. Математическая индукция
- •6. Аналогия
- •7. Умозаключения «от противного»
- •8. Некоторые виды неправильных умозаключений
- •9. Логическая структура математической задачи
- •10. Закон достаточного основания и аксиоматический метод в математике
- •Практическая работа. Математическое доказательство
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 10. Текстовая задача и процесс ее решения
- •1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- •2. Структура процесса решения текстовой задачи
- •2. Методы и способы решения текстовых задач
- •3. Этапы решения задачи и приемы их выполнения
- •1. Анализ задачи
- •4. Поиск и составление плана решения задачи
- •5. Осуществление плана решения задачи
- •6. Проверка решения задачи
- •7. Моделирование в процессе решения текстовых задач
- •Практическая работа. Текстовая задача и процесс ее решения
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 11. Комбинаторные задачи и их решение
- •1. Комбинаторика
- •2. Правила суммы и произведения
- •3. Размещения и сочетания
- •Практическая работа. Комбинаторные задачи и их решение
- •Вопросы для коллоквиума
- •Модуль 3. Целые неотрицательные числа
- •Тема 12. Аксиоматическое построение системы натуральных чисел
- •1. Из истории возникновения понятия натурального числа
- •2. Об аксиоматическом способе построения теории
- •3. Основные понятия и аксиомы. Определение натурального числа
- •4. Количественные натуральные числа. Счет
- •Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- •Вопросы для самоконтроля
- •Задания для самостоятельной работы
- •Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- •1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •2. Теоретико-множественный смысл суммы
- •3. Теоретико-множественный смысл разности
- •4. Теоретико-множественный смысл произведения
- •5. Теоретико-множественный смысл частного натуральных чисел
- •Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 14. Позиционные и непозиционные системы исчисления
- •1. Позиционные и непозиционные системы счисления
- •2. Запись числа в десятичной системе счисления
- •Практическая работа. Запись целых неотрицательных чисел
- •Теоретическая часть
- •Основные понятия темы
- •Тема 15. Алгоритмы действий над целыми неотрицательными числами
- •1. Алгоритм сложения
- •2. Алгоритм вычитания
- •3. Алгоритм умножения
- •4. Алгоритм деления
- •Практическая работа. Алгоритмы арифметических действий
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 16. Отношение делимости и его свойства Содержание
- •Признаки делимости.
- •Наименьшее общее кратное и наибольший общий делитель.
- •1. Отношение делимости и его свойства
- •2. Признаки делимости
- •3. Наименьшее общее кратное и наибольший общий делитель
- •4. Простые числа
- •5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •Практическая работа. Делимость натуральных чисел
- •Тема 17. О расширении множества натуральных чисел
- •1. Понятие дроби
- •2. Положительные рациональные числа
- •3. Запись положительных рациональных чисел в виде десятичных дробей
- •4. Действительные числа
- •Практическая работа. Действия над положительными действительными числами
- •Вопросы к коллоквиуму
- •Теоретико-множественный смысл отношения «меньше», «равно»
- •Теоретико-множественный смысл суммы.
- •Теоретико-множественный смысл разности.
- •Признаки делимости.
- •Тема 18. Натуральное число как мера величины. Измерение величин
- •1. Понятие положительной скалярной величины и ее измерения
- •2. Смысл натурального числа, полученного в результате измерения величины
- •3. Смысл суммы и разности
- •Практическая работа. Понятие положительной скалярной величины
- •Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- •Теоретическая часть Вопросы к изучению
- •Определения, теоремы, выводы
- •Тема 19. Геометрические фигуры на плоскости и их свойства
- •1. Понятие геометрической фигуры
- •2. Углы
- •3. Параллельные и перпендикулярные прямые
- •4. Треугольники
- •5. Четырехугольники
- •Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- •1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- •2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- •6. Многоугольники
- •7. Окружность и круг
- •8. Построение геометрических фигур на плоскости.
- •1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- •2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- •3. Найти середину отрезка.
- •4. Построить биссектрису данного угла.
- •5. Через данную точку провести прямую, перпендикулярную данной прямой.
- •9. Преобразования геометрических фигур. Понятие преобразования
- •1. Симметрия относительно точки (центральная симметрия).
- •2. Симметрия относительно прямой (осевая симметрия).
- •3. Гомотетия.
- •10. Движения и равенство фигур
- •Практическая работа. Решение геометрических задач
- •Практическая работа. Основные задачи на построение на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 20. Изображения пространственных фигур
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •3. Шар, цилиндр, конус и их изображение
- •Практическая работа. Изображение пространственных фигур на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 21. Геометрические величины
- •1. Длина отрезка и ее измерение
- •2. Величина угла и ее измерение
- •3. Понятие площади фигуры и ее измерение
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Практическая работа. Геометрические величины
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Правила, замечания
- •Практическая часть
- •Список литературы
- •Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- •Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)
Тема 15. Алгоритмы действий над целыми неотрицательными числами
Содержание
Алгоритм сложения.
Алгоритм вычитания.
Алгоритм умножения.
Алгоритм деления.
Основная литература7, 13, 16, 17, 18, 33, 34;
Дополнительная литература 16, 31, 55, 58, 60, 73, 84
1. Алгоритм сложения
Сложение однозначных чисел можно выполнить, основываясь на определении этого действия, но чтобы всякий раз не обращаться к определению, все суммы, которые получаются при сложении однозначных чисел, записывают в особую таблицу, называемую таблицей сложения однозначных чисел, и запоминают.
Естественно, смысл сложения сохраняется и для многозначных чисел, но практическое выполнение сложения происходит по особым правилам. Сумму многозначных чисел обычно находят, выполняя сложение столбиком.
Например,
341
+ 7238
7579
Выясним, каким образом возникает этот алгоритм, какие теоретические положения лежат в его основе.
Представим слагаемые 341 и 7238 в виде суммы степеней десяти с коэффициентами: 341 + 7238 = (3·102 + 4·10 + 1) + (7·103 + 2·102 + 3·10 + 8).
Раскроем скобки в полученном выражении, поменяем местами и сгруппируем слагаемые так, чтобы единицы оказались рядом с единиц десятки с десятками и т.д. Все эти преобразования можно выполи на основании соответствующих свойств сложения. Свойство ассоциативности разрешает записать выражение без скобок: 3·102 + 4 ·10 + 1 + 7·103 + 2·102 + 3 ·10 + 8.
На основании свойства коммутативности поменяем местами слагаемые: 7·103 + 3·102 + 2·102 + 4·10 + 3·10 + 1 + 8. Согласно свойству ассоциативности, произведем группировку: 7·103 + (3·102 + 2·102) + (4·10 + 3·10) + (1 + 8). Вынесем за скобки в первой выдела группе число 102, а во второй - 10. Это можно сделать в соответствии со свойством дистрибутивности умножения относительно сложения:
7·103 + (3 + 2) ·102 + (4 + 3) ·10 + (1 + 8).
Итак, сложение данных чисел 341 и 7238 свелось к сложению однозначных чисел, изображенных цифрами соответствующих разрядов. Эти суммы находим по таблице сложения: 7·103 + 5·102 + 7·10 + 9. Полученное выражение есть десятичная запись числа 7579.
Видим, что в основе алгоритма сложения многозначных чисел лежат следующие теоретические факты:
- способ записи чисел в десятичной системе счисления;
- свойства коммутативности и ассоциативности сложения;
- дистрибутивность умножения относительно сложения;
- таблица сложения однозначных чисел.
Нетрудно убедиться в том, что в случае сложения чисел «с переходом через десяток» теоретические основы алгоритма сложения будут теми же. Рассмотрим, например, сумму 748 + 436.
Представим слагаемые в виде суммы степеней десяти с соответствующими коэффициентами: (7·102 + 4·10 + 8) + (4·102 + 3·10 +6). Воспользуемся свойствами сложения и дистрибутивностью умножения относительно сложения и преобразуем полученное выражение к такому виду: (7+4)·102+(4+3)·10+(8+6). Видим, что в этом случае сложение данных чисел также свелось к сложению однозначных чисел, но сумма 7+4, 8+6 превышают 10 и поэтому последнее выражение не является десятичной записью числа. Необходимо сделать так, чтобы коэффициенты перед степенями 10 оказались меньше 10. Для этого выполним ряд преобразований. Сначала сумму 8+6 представим в виде 1·10 + 4: (7 + 4)·102 +(4+3)·10+(1·10 + 4).
Затем воспользуемся свойствами сложения и умножения и приведем полученное выражение к виду: (7+4)·102+(4+3+1)·10+4. Суть последнего преобразования такова: десяток, который получился при сложении единиц, прибавим к десяткам данных чисел. И наконец, записав сумму 7+4 в виде 1·10+1, получаем: (1·10+1)·102+8·10+4. Последнее выражение есть десятичная запись числа 1184. Следовательно, 748+436=1184.
Выведем алгоритм сложения многозначных чисел в общем виде.
Пусть даны числа: х=аn10n+аn–110n–1+…+а110+а0 и у=bn10n+bn–110n–1+…+b110+b0, т.е. рассмотрим случай, когда количество цифр в записи чисел х и у одинаково, х+у=(аn10n+аn–110n–1+…+а110+а0)+(bn10n+ +bn–110n–1+…+b110+b0)=(аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0) - преобразования выполнены на основе свойств ассоциативности и коммутативности сложения, а также дистрибутивности умножения относительно сложения. Сумму (аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0), вообще говоря, нельзя рассматривать как десятичную запись числа х+у, так как коэффициенты перед степенями 10 могут быть больше 9. Лишь в случае, когда все суммы аk+bk, не превосходят 9, операцию сложения можно считать законченной. В противном случае выбираем наименьшее k, для которого аk+bk10. Если аk+bk10, то из того, что 0аk9 и 0bk 9, следует неравенство 0 аk+bk 18 и поэтому аk+bk можно представить в виде аk+bk=10+сk, где 0сk9. Но тогда (аk+bk)·10k=(10+сk)·10k=10k +1+сk10k. В силу свойств сложения и умножения в (аn+bn)10n+(аn–1+bn–1)10n–1+…(а0+b0) слагаемые (аk+1+b k+1)10k++(аk+bk)10k могут быть заменены на (аk+1+bk+1+1)10k +1+сk10k. После этого рассматриваем коэффициенты аn+bn, аn–1+bn–1,+…аk+1+bk+1+1, выбираем наименьшее s, при котором коэффициент больше 9, и повторяем описанную процедуру. Через n шагов придем к выражению вида: х+у=(сп+10)10n+…+с0, где сп0, или х+у=10n +1+сп10n+…+с0, и где для всех n выполняется равенство 0сп10. Тем самым получена десятичная запись числа х+у.
В случае когда десятичные записи слагаемых имеют разное количество цифр, надо приписать к числу, имеющему меньшее количество цифр, несколько нулей впереди, уравняв количество цифр в обоих слагаемых. После этого применяется описанный выше процесс сложения.
В общем виде алгоритм сложения натуральных чисел, записанных в десятичной системе счисления, формулируют так:
Записывают второе слагаемое под первым так, чтобы соответствующие разряды находилось друг под другом.
Складывают единицы первого разряда. Если сумма меньше десяти записывают ее в разряд единиц ответа и переходят к следующему разряду (десятков).
Если сумма единиц больше или равна десяти, то представляют ее в виде а0+b0=1·10+с0, где с0 - однозначное число; записывают с0, в разряд единиц ответа и прибавляют 1 к десяткам первого слагаемого, после чего переходят к разряду десятков.
Повторяют те же действия с десятками, потом с сотнями и процесс заканчивается, когда оказываются сложенными цифры старших разрядов. При этом, если их сумма больше или равна десяти, то приписываем впереди обоих слагаемых нули, увеличиваем нуль перед первым слагаемым на 1 и выполняем сложение 1+0=1.
Замечание. В этом алгоритме (как и в некоторых других) для краткости употребляется термин «цифра» вместо «однозначное число, изображаемое цифрой».