
- •Министерство образования и науки украины
- •Содержание
- •Пояснительная записка
- •Структура курса
- •Модуль 1. Множества
- •Тема 1. Множества и операции над ними
- •Введение
- •1. Понятие множества и элемента множества
- •2.Способы задания множества
- •3. Отношения между множествами. Подмножество
- •Примеры
- •4. Круги Эйлера-Венна
- •Практическая работа. Понятие множества
- •Тема 2. Операции над множествами
- •1. Пересечение множеств
- •2. Объединение множеств
- •3. Законы пересечения и объединения множеств
- •Определение. Для любых множеств а, в и с выполняются равенства:
- •4. Вычитание множеств. Дополнение подмножества
- •Практическая работа. Операции над множествами
- •Вопросы к изучению
- •Основные понятия
- •Обозначения
- •Практическая часть
- •Тема 2.1. Понятие разбиения множества на классы
- •1. Понятие разбиения множества на классы
- •Практическая работа. Разбиение множества на классы
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 2.2. Декартово произведение множеств
- •1. Декартово произведение множеств
- •2. Свойства операции нахождения декартова произведения
- •3. Кортеж. Длина кортежа
- •Практическая работа. Декартово произведение
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 3. Понятие соответствия Содержание
- •1. Понятие соответствия между множествами
- •Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- •2. Способы задания соответствий
- •3. Соответствие обратное данному
- •4. Взаимно однозначные соответствия
- •5. Равномощные множества
- •Практическая работа. Соответствия между двумя множествами
- •Тема 4. Числовые функции
- •1. Понятие функции. Способы задания функций
- •2. Прямая и обратная пропорциональности
- •Основные понятия темы
- •Основные выводы, замечания
- •Тема 5. Отношения на множестве
- •1. Понятие отношения между элементами одного множества
- •2. Способы задания отношений
- •3. Свойства бинарных отношений
- •Практическая работа. Отношения на множестве
- •Тема 6. Выражение. Уравнение. Неравенство
- •Выражения и их тождественные преобразования.
- •1. Выражения и их тождественные преобразования
- •3. Уравнения с одной переменной
- •4. Неравенства с одной переменной
- •Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- •Практическая работа. Уравнения и неравенства с одной переменной.
- •Контрольная (зачетная) работа
- •Модуль 2. Математические утверждения и их структура
- •Тема 7. Математические понятия Содержание
- •1. Математические понятия. Объем и содержание понятия
- •Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- •2. Отношение рода и вида между понятиями
- •4. Требования к определению понятий
- •5. Неявные определения
- •Практическая работа. Математические понятия
- •Вопросы к изучению
- •Представления о математических понятиях -
- •Обозначения
- •Тема 8. Высказывания и высказывательные формы
- •2. Конъюнкция и дизъюнкция высказываний
- •3. Конъюнкция и дизъюнкция высказывательных форм
- •Практическая работа. Высказывания и высказывательные формы
- •Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- •1. Высказывания с кванторами
- •2. Истинность высказываний с кванторами
- •3. Отрицание высказываний и высказывательных форм
- •Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- •Тема 8.2. Отношения следования и равносильности между предложениями
- •1. Отношения следования между предложениями
- •2. Отношения равносильности между предложениями
- •Практическая работа. Отношения следования и равносильности между предложениями
- •Вопросы к изучению
- •Основные понятия темы
- •Обозначения
- •Тема 8.3. Структура теоремы. Виды теорем
- •1. Структура теоремы
- •2. Отличие теоремы от правила
- •3. Виды теорем
- •Практическая работа. Структура теоремы. Виды теорем
- •Тема 9. Математическое доказательство
- •1. Понятие умозаключения.
- •2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- •3. Индуктивные умозаключения. Полная индукция
- •Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- •4. Неполная индукция
- •5. Математическая индукция
- •6. Аналогия
- •7. Умозаключения «от противного»
- •8. Некоторые виды неправильных умозаключений
- •9. Логическая структура математической задачи
- •10. Закон достаточного основания и аксиоматический метод в математике
- •Практическая работа. Математическое доказательство
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 10. Текстовая задача и процесс ее решения
- •1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- •2. Структура процесса решения текстовой задачи
- •2. Методы и способы решения текстовых задач
- •3. Этапы решения задачи и приемы их выполнения
- •1. Анализ задачи
- •4. Поиск и составление плана решения задачи
- •5. Осуществление плана решения задачи
- •6. Проверка решения задачи
- •7. Моделирование в процессе решения текстовых задач
- •Практическая работа. Текстовая задача и процесс ее решения
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 11. Комбинаторные задачи и их решение
- •1. Комбинаторика
- •2. Правила суммы и произведения
- •3. Размещения и сочетания
- •Практическая работа. Комбинаторные задачи и их решение
- •Вопросы для коллоквиума
- •Модуль 3. Целые неотрицательные числа
- •Тема 12. Аксиоматическое построение системы натуральных чисел
- •1. Из истории возникновения понятия натурального числа
- •2. Об аксиоматическом способе построения теории
- •3. Основные понятия и аксиомы. Определение натурального числа
- •4. Количественные натуральные числа. Счет
- •Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- •Вопросы для самоконтроля
- •Задания для самостоятельной работы
- •Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- •1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •2. Теоретико-множественный смысл суммы
- •3. Теоретико-множественный смысл разности
- •4. Теоретико-множественный смысл произведения
- •5. Теоретико-множественный смысл частного натуральных чисел
- •Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 14. Позиционные и непозиционные системы исчисления
- •1. Позиционные и непозиционные системы счисления
- •2. Запись числа в десятичной системе счисления
- •Практическая работа. Запись целых неотрицательных чисел
- •Теоретическая часть
- •Основные понятия темы
- •Тема 15. Алгоритмы действий над целыми неотрицательными числами
- •1. Алгоритм сложения
- •2. Алгоритм вычитания
- •3. Алгоритм умножения
- •4. Алгоритм деления
- •Практическая работа. Алгоритмы арифметических действий
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 16. Отношение делимости и его свойства Содержание
- •Признаки делимости.
- •Наименьшее общее кратное и наибольший общий делитель.
- •1. Отношение делимости и его свойства
- •2. Признаки делимости
- •3. Наименьшее общее кратное и наибольший общий делитель
- •4. Простые числа
- •5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •Практическая работа. Делимость натуральных чисел
- •Тема 17. О расширении множества натуральных чисел
- •1. Понятие дроби
- •2. Положительные рациональные числа
- •3. Запись положительных рациональных чисел в виде десятичных дробей
- •4. Действительные числа
- •Практическая работа. Действия над положительными действительными числами
- •Вопросы к коллоквиуму
- •Теоретико-множественный смысл отношения «меньше», «равно»
- •Теоретико-множественный смысл суммы.
- •Теоретико-множественный смысл разности.
- •Признаки делимости.
- •Тема 18. Натуральное число как мера величины. Измерение величин
- •1. Понятие положительной скалярной величины и ее измерения
- •2. Смысл натурального числа, полученного в результате измерения величины
- •3. Смысл суммы и разности
- •Практическая работа. Понятие положительной скалярной величины
- •Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- •Теоретическая часть Вопросы к изучению
- •Определения, теоремы, выводы
- •Тема 19. Геометрические фигуры на плоскости и их свойства
- •1. Понятие геометрической фигуры
- •2. Углы
- •3. Параллельные и перпендикулярные прямые
- •4. Треугольники
- •5. Четырехугольники
- •Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- •1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- •2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- •6. Многоугольники
- •7. Окружность и круг
- •8. Построение геометрических фигур на плоскости.
- •1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- •2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- •3. Найти середину отрезка.
- •4. Построить биссектрису данного угла.
- •5. Через данную точку провести прямую, перпендикулярную данной прямой.
- •9. Преобразования геометрических фигур. Понятие преобразования
- •1. Симметрия относительно точки (центральная симметрия).
- •2. Симметрия относительно прямой (осевая симметрия).
- •3. Гомотетия.
- •10. Движения и равенство фигур
- •Практическая работа. Решение геометрических задач
- •Практическая работа. Основные задачи на построение на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 20. Изображения пространственных фигур
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •3. Шар, цилиндр, конус и их изображение
- •Практическая работа. Изображение пространственных фигур на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 21. Геометрические величины
- •1. Длина отрезка и ее измерение
- •2. Величина угла и ее измерение
- •3. Понятие площади фигуры и ее измерение
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Практическая работа. Геометрические величины
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Правила, замечания
- •Практическая часть
- •Список литературы
- •Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- •Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)
4. Теоретико-множественный смысл произведения
Определение умножения натуральных чисел в аксиоматической теории основывается на понятии отношения «непосредственно следовать за» и сложении. В школьном курсе математики используется другое определение умножения, оно связано со сложением одинаковых слагаемых. Покажем, что оно вытекает из первого.
Теорема 4. Если b > 1, то произведение чисел а и b равно сумме b слагаемых, каждое из которых равно а.
Доказательство.
Обозначим сумму b
слагаемых, каждое из которых равно а,
через а
b.
И, кроме того, положим, что а
1 = а. Тогда выражение а
(b
+ 1) будет означать, что рассматривается
сумма b
+ 1 слагаемого, каждое из которых равно
а, т.е. а
(b+
1) =
.
Сумму а + а + …+ а + а можно представить в
виде выражения (
)
+а, которое равно а
b
+ а. Значит, операция аb
обладает теми же свойствами, что и
умножение, определенное в аксиоматической
теории, а именно, а
1 = а и а
(b
+ 1) = а
b
+ а. В силу единственности умножения
получаем, что a
b
= а
b.
Итак, если а и b - натуральные числа и b > 1, то произведение а b можно рассматривать как сумму b слагаемых, каждое из которых равно а.
Умножение на 1 определяется так: а 1 = а.
Если умножение рассматривается на множестве целых неотрицательных чисел, то к этим двум случаем надо добавить третий - определение умножения на нуль: а 0 = 0.
Таким образом, получаем следующее определение умножения целых неотрицательных чисел.
Определение. Если а, b - целые неотрицательные числа, то произведением а b называется число, удовлетворяющее следующим условиям:
1)
а
b
=
, еслн b
> 1;
2) а b = а, если b = 1;
3) а b = 0, если b = 0.
Случаю 1) этого определения можно дать теоретико-множественную трактовку. Если множества А1, А2, ..., Аb, имеют по а элементов каждое, причем никакие два из них не пересекаются, то их объединение А1 А2 ... Аb , содержит а b элементов.
Таким образом, с теоретико-множественных позиций а b (b > 1) представляет собой число элементов в объединении b множеств, каждое из которых содержит по а элементов и никакие два из них не пересекаются.
а b = п (А1 А2 ... Аb) , если п (А1) = п (А2) = ... = п (Аb ) = а и А1, А2, ..., Аb попарно не пересекаются.
Взаимосвязь умножения натуральных чисел с объединением равночисленных попарно непересекающихся подмножеств позволяет обосновывать выбор действия умножения при решении текстовых задач.
Рассмотрим, например, такую задачу: «На одно пальто пришивают 4 пуговицы. Сколько пуговиц надо пришить на 3 таких пальто?» Выясним, почему она решается при помощи умножения.
В задаче речь идет о трех множествах, в каждом из которых 4 элемента. Требуется узнать число элементов в объединении этих трех множеств. Если n(А1) = n(А2) = n(А3) = 4, то n(А1 А2 А3) = n(А1) + n (А2) + n(А3) = 4 + 4 + 4 = 4 3. Произведение 43 является математической моделью данной задачи. Так как 4 3 = 12, то получаем ответ на вопрос: на 3 пальто надо пришить 12 пуговиц.
Можно дать другое теоретико-множественное истолкование произведения целых неотрицательных чисел. Оно связано с понятием декартова произведения множеств.
Теорема 5. Пусть А и В - конечные множества. Тогда их декартово произведение также является конечным множеством, причем выполняется равенство: п(АВ) = п(А) п(В).
Доказательство. Пусть даны множества А = (а1, а2, ..., ап), В = (b1, b2, …, bk), 741 ,причем k > 1. Тогда множество А В состоит из пар вида (аi, bj), где 1 i n, 1 j k. Разобьем множество А В на такие подмножества А1, А2, ..., Аk, что подмножество Аj, состоит из пар вида (а1, bj), (а2, bj),…, (аn, bj).Число таких подмножеств равно k, т.е. числу элементов в множестве В. Каждое множество Аj состоит из n пар, и никакие два из этих множеств не содержат одну и ту же пару. Отсюда следует, что число элементов в декартовом произведении А В равно сумме k слагаемых, каждое из которых равно n, т.е. произведению чисел n и k. Таким образом, равенство n(А В) = n(А) n(В) доказано при k > 1. При k = 1 оно тоже верно, так как в этом случае В содержит один элемент, например, В = {b}, а тогда А В состоит из пар вида (а1, b), (а2,, b),…, (аn, b),число которых равно п. Поскольку n(А) = n, n(В) = 1, то и в этом случае имеем: n(А В) = n(А) n(В)= n1=n.
При k = 0 данное равенство также верно, поскольку В = и n(А)=n(А) n()=а0=0.
Из рассмотренной теоремы следует, что с теоретико-множественной точки зрения произведение а b целых неотрицательных чисел есть число элементов в декартовом произведении множеств А и В, таких, что п(А) = а, п(В) = b.
а b = п(А) п(В) = п(А В ).
Этот подход к определению умножения позволяет раскрыть теоретико-множественный смысл свойств умножения. Например, смысл равенства аb = bа состоит в том, что хотя множества А В и В А различны, они являются равномощными: каждой паре (а, b) из множества А В можно поставить в соответствие единственную пару (b, а) из множества В А, и каждая пара из множества В А сопоставляется только одной паре из множества А В. Значит, n(А В) = n(В А) и поэтому а b = b а.
Аналогично можно раскрыть теоретико-множественный смысл ассоциативного свойства умножения. Множества А (В С) и (А В) С различны, но они являются равномощными: каждой паре (а, (b, с)) из множества А (В С) можно поставить в соответствие единственную пару ((а, b), с) из множества (А В) С, и каждая пара из множества А (В С) сопоставляется единственной паре из множества (А В) С. Поэтому n(А(ВС)) = n((А В)С) и, следовательно, а(bс) = (а b)с.
Дистрибутивность умножения относительно сложения выводится из равенства А (В С) = (А В) (А С), а дистрибутивность умножения относительно вычитания - из равенства А(В \ С)= (АВ) \ (АС).
В начальных курсах математики произведение целых неотрицательных чисел чаще всего определяют через сумму. Случаи а 1 = а и а 0 = 0 принимаются по определению.