
- •Министерство образования и науки украины
- •Содержание
- •Пояснительная записка
- •Структура курса
- •Модуль 1. Множества
- •Тема 1. Множества и операции над ними
- •Введение
- •1. Понятие множества и элемента множества
- •2.Способы задания множества
- •3. Отношения между множествами. Подмножество
- •Примеры
- •4. Круги Эйлера-Венна
- •Практическая работа. Понятие множества
- •Тема 2. Операции над множествами
- •1. Пересечение множеств
- •2. Объединение множеств
- •3. Законы пересечения и объединения множеств
- •Определение. Для любых множеств а, в и с выполняются равенства:
- •4. Вычитание множеств. Дополнение подмножества
- •Практическая работа. Операции над множествами
- •Вопросы к изучению
- •Основные понятия
- •Обозначения
- •Практическая часть
- •Тема 2.1. Понятие разбиения множества на классы
- •1. Понятие разбиения множества на классы
- •Практическая работа. Разбиение множества на классы
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 2.2. Декартово произведение множеств
- •1. Декартово произведение множеств
- •2. Свойства операции нахождения декартова произведения
- •3. Кортеж. Длина кортежа
- •Практическая работа. Декартово произведение
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 3. Понятие соответствия Содержание
- •1. Понятие соответствия между множествами
- •Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- •2. Способы задания соответствий
- •3. Соответствие обратное данному
- •4. Взаимно однозначные соответствия
- •5. Равномощные множества
- •Практическая работа. Соответствия между двумя множествами
- •Тема 4. Числовые функции
- •1. Понятие функции. Способы задания функций
- •2. Прямая и обратная пропорциональности
- •Основные понятия темы
- •Основные выводы, замечания
- •Тема 5. Отношения на множестве
- •1. Понятие отношения между элементами одного множества
- •2. Способы задания отношений
- •3. Свойства бинарных отношений
- •Практическая работа. Отношения на множестве
- •Тема 6. Выражение. Уравнение. Неравенство
- •Выражения и их тождественные преобразования.
- •1. Выражения и их тождественные преобразования
- •3. Уравнения с одной переменной
- •4. Неравенства с одной переменной
- •Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- •Практическая работа. Уравнения и неравенства с одной переменной.
- •Контрольная (зачетная) работа
- •Модуль 2. Математические утверждения и их структура
- •Тема 7. Математические понятия Содержание
- •1. Математические понятия. Объем и содержание понятия
- •Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- •2. Отношение рода и вида между понятиями
- •4. Требования к определению понятий
- •5. Неявные определения
- •Практическая работа. Математические понятия
- •Вопросы к изучению
- •Представления о математических понятиях -
- •Обозначения
- •Тема 8. Высказывания и высказывательные формы
- •2. Конъюнкция и дизъюнкция высказываний
- •3. Конъюнкция и дизъюнкция высказывательных форм
- •Практическая работа. Высказывания и высказывательные формы
- •Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- •1. Высказывания с кванторами
- •2. Истинность высказываний с кванторами
- •3. Отрицание высказываний и высказывательных форм
- •Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- •Тема 8.2. Отношения следования и равносильности между предложениями
- •1. Отношения следования между предложениями
- •2. Отношения равносильности между предложениями
- •Практическая работа. Отношения следования и равносильности между предложениями
- •Вопросы к изучению
- •Основные понятия темы
- •Обозначения
- •Тема 8.3. Структура теоремы. Виды теорем
- •1. Структура теоремы
- •2. Отличие теоремы от правила
- •3. Виды теорем
- •Практическая работа. Структура теоремы. Виды теорем
- •Тема 9. Математическое доказательство
- •1. Понятие умозаключения.
- •2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- •3. Индуктивные умозаключения. Полная индукция
- •Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- •4. Неполная индукция
- •5. Математическая индукция
- •6. Аналогия
- •7. Умозаключения «от противного»
- •8. Некоторые виды неправильных умозаключений
- •9. Логическая структура математической задачи
- •10. Закон достаточного основания и аксиоматический метод в математике
- •Практическая работа. Математическое доказательство
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 10. Текстовая задача и процесс ее решения
- •1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- •2. Структура процесса решения текстовой задачи
- •2. Методы и способы решения текстовых задач
- •3. Этапы решения задачи и приемы их выполнения
- •1. Анализ задачи
- •4. Поиск и составление плана решения задачи
- •5. Осуществление плана решения задачи
- •6. Проверка решения задачи
- •7. Моделирование в процессе решения текстовых задач
- •Практическая работа. Текстовая задача и процесс ее решения
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 11. Комбинаторные задачи и их решение
- •1. Комбинаторика
- •2. Правила суммы и произведения
- •3. Размещения и сочетания
- •Практическая работа. Комбинаторные задачи и их решение
- •Вопросы для коллоквиума
- •Модуль 3. Целые неотрицательные числа
- •Тема 12. Аксиоматическое построение системы натуральных чисел
- •1. Из истории возникновения понятия натурального числа
- •2. Об аксиоматическом способе построения теории
- •3. Основные понятия и аксиомы. Определение натурального числа
- •4. Количественные натуральные числа. Счет
- •Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- •Вопросы для самоконтроля
- •Задания для самостоятельной работы
- •Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- •1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •2. Теоретико-множественный смысл суммы
- •3. Теоретико-множественный смысл разности
- •4. Теоретико-множественный смысл произведения
- •5. Теоретико-множественный смысл частного натуральных чисел
- •Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 14. Позиционные и непозиционные системы исчисления
- •1. Позиционные и непозиционные системы счисления
- •2. Запись числа в десятичной системе счисления
- •Практическая работа. Запись целых неотрицательных чисел
- •Теоретическая часть
- •Основные понятия темы
- •Тема 15. Алгоритмы действий над целыми неотрицательными числами
- •1. Алгоритм сложения
- •2. Алгоритм вычитания
- •3. Алгоритм умножения
- •4. Алгоритм деления
- •Практическая работа. Алгоритмы арифметических действий
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 16. Отношение делимости и его свойства Содержание
- •Признаки делимости.
- •Наименьшее общее кратное и наибольший общий делитель.
- •1. Отношение делимости и его свойства
- •2. Признаки делимости
- •3. Наименьшее общее кратное и наибольший общий делитель
- •4. Простые числа
- •5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •Практическая работа. Делимость натуральных чисел
- •Тема 17. О расширении множества натуральных чисел
- •1. Понятие дроби
- •2. Положительные рациональные числа
- •3. Запись положительных рациональных чисел в виде десятичных дробей
- •4. Действительные числа
- •Практическая работа. Действия над положительными действительными числами
- •Вопросы к коллоквиуму
- •Теоретико-множественный смысл отношения «меньше», «равно»
- •Теоретико-множественный смысл суммы.
- •Теоретико-множественный смысл разности.
- •Признаки делимости.
- •Тема 18. Натуральное число как мера величины. Измерение величин
- •1. Понятие положительной скалярной величины и ее измерения
- •2. Смысл натурального числа, полученного в результате измерения величины
- •3. Смысл суммы и разности
- •Практическая работа. Понятие положительной скалярной величины
- •Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- •Теоретическая часть Вопросы к изучению
- •Определения, теоремы, выводы
- •Тема 19. Геометрические фигуры на плоскости и их свойства
- •1. Понятие геометрической фигуры
- •2. Углы
- •3. Параллельные и перпендикулярные прямые
- •4. Треугольники
- •5. Четырехугольники
- •Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- •1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- •2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- •6. Многоугольники
- •7. Окружность и круг
- •8. Построение геометрических фигур на плоскости.
- •1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- •2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- •3. Найти середину отрезка.
- •4. Построить биссектрису данного угла.
- •5. Через данную точку провести прямую, перпендикулярную данной прямой.
- •9. Преобразования геометрических фигур. Понятие преобразования
- •1. Симметрия относительно точки (центральная симметрия).
- •2. Симметрия относительно прямой (осевая симметрия).
- •3. Гомотетия.
- •10. Движения и равенство фигур
- •Практическая работа. Решение геометрических задач
- •Практическая работа. Основные задачи на построение на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 20. Изображения пространственных фигур
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •3. Шар, цилиндр, конус и их изображение
- •Практическая работа. Изображение пространственных фигур на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 21. Геометрические величины
- •1. Длина отрезка и ее измерение
- •2. Величина угла и ее измерение
- •3. Понятие площади фигуры и ее измерение
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Практическая работа. Геометрические величины
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Правила, замечания
- •Практическая часть
- •Список литературы
- •Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- •Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)
1. Из истории возникновения понятия натурального числа
Числа возникли из потребности счета и измерения и претерпели длительный путь исторического развития.
Было время, когда люди не умели считать. Чтобы сравнить конечные множества, устанавливали взаимно однозначное соответствие между данными множествами или между одним из множеств и подмножеством другого множества, т.е. на этом этапе человек воспринимал численность предметов без их пересчета. Например, о численности группы из двух предметов он мог говорить: «Столько же, сколько рук у человека», о множестве из пяти предметов - «столько же, сколько пальцев на руке». При таком способе сравниваемые множества должны были быть одновременно обозримы.
В результате очень долгого периода развития человек пришел к следующему этапу создания натуральных чисел - для сравнения множеств стали применять множества-посредники: мелкие камешки, раковины, пальцы. Эти множества-посредники уже представляли собой зачатки понятия натурального числа, хотя и на этом этапе число не отделялось от сосчитываемых предметов: речь шла, например, о пяти камешках, пяти пальцах, а не о числе «пять» вообще. Названия множеств-посредников стали использовать для определения численности множеств, которые с ними сравнивались. Так, у некоторых племен численность множества, состоящего из пяти элементов, обозначалась словом «рука», а численность множества из 20 предметов - словами «весь человек».
Только после того как человек научился оперировать множествами-посредниками, установил то общее, что существует, например, между пятью пальцами и пятью яблоками, т.е. когда произошло отвлечение от природы элементов множеств-посредников, возникло представление о натуральном числе. На этом этапе при счете, например, яблок, не перечислялись уже «одно яблоко», «два яблока» и т.д., а проговаривались слова «один», «два» и т.д. Это был важнейший этап в развитии понятия числа. Историки считают, что произошло это в каменном веке, в эпоху первобытнообщинного строя, примерно в 10-5 тысячелетии до н.э.
Со временем люди научились не только называть числа, но и обозначать их, а также выполнять над ними действия. Вообще натуральный ряд чисел возник не сразу, история его формирования длительная. Запас чисел, которые употребляли, ведя счет, увеличивался постепенно. Постепенно сложилось и представление о бесконечности множества натуральных чисел. Так, в работе «Псаммит» - исчисление песчинок - древнегреческий математик Архимед (III в. до н.э.) показал, что ряд чисел может быть продолжен бесконечно, и описал способ образования и словесного обозначения сколь угодно больших чисел.
Возникновение понятия натурального числа было важнейшим моментом в развитии математики. Появилась возможность изучать эти числа независимо от тех конкретных задач, в связи с которыми они возникли. Теоретическая наука, которая стала изучать числа и действия над ними, получила название «арифметика». Слово «арифметика» происходит от греческого arithmos, что значит «число». Следовательно, арифметика - это наука о числе.
Арифметика возникла в странах Древнего Востока: Вавилоне, Китае, Индии и Египте. Накопленные в этих странах математические знания были развиты и продолжены учеными Древней Греции. В средние века большой вклад в развитие арифметики внесли математики Индии, стран арабского мира и Средней Азии, а начиная с XIII века - европейские ученые.
Термин «натуральное число» впервые употребил в V в. римский ученый А.Боэций, который известен как переводчик работ известных математиков прошлого на латинский язык и как автор книги «О введении в арифметику», которая до XVI века была образцом для всей европейской математики.
Во второй половине XIX века натуральные числа оказались фундаментом всей математической науки, от состояния которого зависела и прочность всего здания математики. В связи с этим появилась необходимость в строгом логическом обосновании понятия натурального числа, в систематизации того, что с ним связано. Так как математика XIX века перешла к аксиоматическому построению своих теорий, то была разработана аксиоматическая теория натурального числа. Большое влияние на исследование природы натурального числа оказала и созданная в XIX веке теория множеств. Конечно, в созданных теориях понятия натурального числа и действий над ними получили большую абстрактность, но этим всегда сопровождается процесс обобщения и систематизации отдельных фактов.