
- •Министерство образования и науки украины
- •Содержание
- •Пояснительная записка
- •Структура курса
- •Модуль 1. Множества
- •Тема 1. Множества и операции над ними
- •Введение
- •1. Понятие множества и элемента множества
- •2.Способы задания множества
- •3. Отношения между множествами. Подмножество
- •Примеры
- •4. Круги Эйлера-Венна
- •Практическая работа. Понятие множества
- •Тема 2. Операции над множествами
- •1. Пересечение множеств
- •2. Объединение множеств
- •3. Законы пересечения и объединения множеств
- •Определение. Для любых множеств а, в и с выполняются равенства:
- •4. Вычитание множеств. Дополнение подмножества
- •Практическая работа. Операции над множествами
- •Вопросы к изучению
- •Основные понятия
- •Обозначения
- •Практическая часть
- •Тема 2.1. Понятие разбиения множества на классы
- •1. Понятие разбиения множества на классы
- •Практическая работа. Разбиение множества на классы
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 2.2. Декартово произведение множеств
- •1. Декартово произведение множеств
- •2. Свойства операции нахождения декартова произведения
- •3. Кортеж. Длина кортежа
- •Практическая работа. Декартово произведение
- •Вопросы к изучению
- •Обозначения
- •Правила
- •Тема 3. Понятие соответствия Содержание
- •1. Понятие соответствия между множествами
- •Рассмотрим примеры соответствий, изучаемых в начальном курсе математики.
- •2. Способы задания соответствий
- •3. Соответствие обратное данному
- •4. Взаимно однозначные соответствия
- •5. Равномощные множества
- •Практическая работа. Соответствия между двумя множествами
- •Тема 4. Числовые функции
- •1. Понятие функции. Способы задания функций
- •2. Прямая и обратная пропорциональности
- •Основные понятия темы
- •Основные выводы, замечания
- •Тема 5. Отношения на множестве
- •1. Понятие отношения между элементами одного множества
- •2. Способы задания отношений
- •3. Свойства бинарных отношений
- •Практическая работа. Отношения на множестве
- •Тема 6. Выражение. Уравнение. Неравенство
- •Выражения и их тождественные преобразования.
- •1. Выражения и их тождественные преобразования
- •3. Уравнения с одной переменной
- •4. Неравенства с одной переменной
- •Практическая работа. Выражения и их преобразования. Числовые равенства и неравенства с одной переменной.
- •Практическая работа. Уравнения и неравенства с одной переменной.
- •Контрольная (зачетная) работа
- •Модуль 2. Математические утверждения и их структура
- •Тема 7. Математические понятия Содержание
- •1. Математические понятия. Объем и содержание понятия
- •Пусть заданы два понятия а и b. Объемы их обозначим соответственно а и в.
- •2. Отношение рода и вида между понятиями
- •4. Требования к определению понятий
- •5. Неявные определения
- •Практическая работа. Математические понятия
- •Вопросы к изучению
- •Представления о математических понятиях -
- •Обозначения
- •Тема 8. Высказывания и высказывательные формы
- •2. Конъюнкция и дизъюнкция высказываний
- •3. Конъюнкция и дизъюнкция высказывательных форм
- •Практическая работа. Высказывания и высказывательные формы
- •Тема 8.1. Высказывания с квантором. Отрицание высказываний и высказывательных форм
- •1. Высказывания с кванторами
- •2. Истинность высказываний с кванторами
- •3. Отрицание высказываний и высказывательных форм
- •Практическая работа. Высказывания с кванторами. Отрицание высказываний и высказывательных форм
- •Тема 8.2. Отношения следования и равносильности между предложениями
- •1. Отношения следования между предложениями
- •2. Отношения равносильности между предложениями
- •Практическая работа. Отношения следования и равносильности между предложениями
- •Вопросы к изучению
- •Основные понятия темы
- •Обозначения
- •Тема 8.3. Структура теоремы. Виды теорем
- •1. Структура теоремы
- •2. Отличие теоремы от правила
- •3. Виды теорем
- •Практическая работа. Структура теоремы. Виды теорем
- •Тема 9. Математическое доказательство
- •1. Понятие умозаключения.
- •2. Дедуктивные умозаключения Умозаключения, построенные по схеме
- •3. Индуктивные умозаключения. Полная индукция
- •Все s1, s2,..., Sп исчерпывают весь класс s (4) Все s есть р
- •4. Неполная индукция
- •5. Математическая индукция
- •6. Аналогия
- •7. Умозаключения «от противного»
- •8. Некоторые виды неправильных умозаключений
- •9. Логическая структура математической задачи
- •10. Закон достаточного основания и аксиоматический метод в математике
- •Практическая работа. Математическое доказательство
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 10. Текстовая задача и процесс ее решения
- •1. Роль и место задач в начальном курсе математики. Функции текстовых задач
- •2. Структура процесса решения текстовой задачи
- •2. Методы и способы решения текстовых задач
- •3. Этапы решения задачи и приемы их выполнения
- •1. Анализ задачи
- •4. Поиск и составление плана решения задачи
- •5. Осуществление плана решения задачи
- •6. Проверка решения задачи
- •7. Моделирование в процессе решения текстовых задач
- •Практическая работа. Текстовая задача и процесс ее решения
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 11. Комбинаторные задачи и их решение
- •1. Комбинаторика
- •2. Правила суммы и произведения
- •3. Размещения и сочетания
- •Практическая работа. Комбинаторные задачи и их решение
- •Вопросы для коллоквиума
- •Модуль 3. Целые неотрицательные числа
- •Тема 12. Аксиоматическое построение системы натуральных чисел
- •1. Из истории возникновения понятия натурального числа
- •2. Об аксиоматическом способе построения теории
- •3. Основные понятия и аксиомы. Определение натурального числа
- •4. Количественные натуральные числа. Счет
- •Семинарское занятие. История возникновения понятия натурального числа Вопросы к изучению
- •Вопросы для самоконтроля
- •Задания для самостоятельной работы
- •Тема 13. Теоретико-множественный подход к построению натурального ряда чисел. Теоретико-множественный смысл арифметических действий.
- •1. Теоретико-множественный смысл натурального числа, нуля и отношения «меньше»
- •2. Теоретико-множественный смысл суммы
- •3. Теоретико-множественный смысл разности
- •4. Теоретико-множественный смысл произведения
- •5. Теоретико-множественный смысл частного натуральных чисел
- •Практическая работа. Теоретико–множественный смысл суммы, разности, произведения, частного и отношения «меньше»
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 14. Позиционные и непозиционные системы исчисления
- •1. Позиционные и непозиционные системы счисления
- •2. Запись числа в десятичной системе счисления
- •Практическая работа. Запись целых неотрицательных чисел
- •Теоретическая часть
- •Основные понятия темы
- •Тема 15. Алгоритмы действий над целыми неотрицательными числами
- •1. Алгоритм сложения
- •2. Алгоритм вычитания
- •3. Алгоритм умножения
- •4. Алгоритм деления
- •Практическая работа. Алгоритмы арифметических действий
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Тема 16. Отношение делимости и его свойства Содержание
- •Признаки делимости.
- •Наименьшее общее кратное и наибольший общий делитель.
- •1. Отношение делимости и его свойства
- •2. Признаки делимости
- •3. Наименьшее общее кратное и наибольший общий делитель
- •4. Простые числа
- •5. Способы нахождения наибольшего общего делителя и наименьшего общего кратного чисел
- •Практическая работа. Делимость натуральных чисел
- •Тема 17. О расширении множества натуральных чисел
- •1. Понятие дроби
- •2. Положительные рациональные числа
- •3. Запись положительных рациональных чисел в виде десятичных дробей
- •4. Действительные числа
- •Практическая работа. Действия над положительными действительными числами
- •Вопросы к коллоквиуму
- •Теоретико-множественный смысл отношения «меньше», «равно»
- •Теоретико-множественный смысл суммы.
- •Теоретико-множественный смысл разности.
- •Признаки делимости.
- •Тема 18. Натуральное число как мера величины. Измерение величин
- •1. Понятие положительной скалярной величины и ее измерения
- •2. Смысл натурального числа, полученного в результате измерения величины
- •3. Смысл суммы и разности
- •Практическая работа. Понятие положительной скалярной величины
- •Практическая работа. Обоснование выбора действий при решении текстовых задач в начальной школе
- •Теоретическая часть Вопросы к изучению
- •Определения, теоремы, выводы
- •Тема 19. Геометрические фигуры на плоскости и их свойства
- •1. Понятие геометрической фигуры
- •2. Углы
- •3. Параллельные и перпендикулярные прямые
- •4. Треугольники
- •5. Четырехугольники
- •Параллелограммом называется четырехугольник, у которого противолежащие стороны параллельны.
- •1. Диагонали параллелограмма пересекаются и точкой пересечения делятся пополам.
- •2. У параллелограмма противолежащие стороны и противолежащие углы раны.
- •6. Многоугольники
- •7. Окружность и круг
- •8. Построение геометрических фигур на плоскости.
- •1. Построить на данной прямой отрезок со, равный данному отрезку ав.
- •2. Отложить от данной полупрямой в данную полуплоскость угол, равный данному углу.
- •3. Найти середину отрезка.
- •4. Построить биссектрису данного угла.
- •5. Через данную точку провести прямую, перпендикулярную данной прямой.
- •9. Преобразования геометрических фигур. Понятие преобразования
- •1. Симметрия относительно точки (центральная симметрия).
- •2. Симметрия относительно прямой (осевая симметрия).
- •3. Гомотетия.
- •10. Движения и равенство фигур
- •Практическая работа. Решение геометрических задач
- •Практическая работа. Основные задачи на построение на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 20. Изображения пространственных фигур
- •1. Свойства параллельного проектирования
- •2. Многогранники и их изображение
- •3. Шар, цилиндр, конус и их изображение
- •Практическая работа. Изображение пространственных фигур на плоскости
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Практическая часть
- •Тема 21. Геометрические величины
- •1. Длина отрезка и ее измерение
- •2. Величина угла и ее измерение
- •3. Понятие площади фигуры и ее измерение
- •4. Площадь многоугольника
- •5. Площадь произвольной плоской фигуры и ее измерение
- •Практическая работа. Геометрические величины
- •Теоретическая часть Вопросы к изучению
- •Основные понятия темы
- •Правила, замечания
- •Практическая часть
- •Список литературы
- •Учебник для студентов высших педагогических учебных заведений специальности: «начальное обучение»
- •Глузман Неля Анатольевна Кандидат педагогических наук, доцент, заведующий кафедрой методик начального и дошкольного образования рвуз «Крымский гуманитарный университет» (г. Ялта)
1. Симметрия относительно точки (центральная симметрия).
Пусть
О - фиксированная точка и А - произвольная
точка плоскости. Точка А' называется
симметричной точке А относительно точки
О, если точки А, О, А' лежат на одной прямой
и ОА = ОА' (рис. 18). Точка, симметричная
точке О, есть сама эта точка.
Пусть
Р - данная фигура и О - фиксированная
точка плоскости. Преобразование фигуры
Р в фигуру Р', при котором каждая точка
А фигуры Р переходит в точку А' фигуры
Р', симметричную А относительно точки
О,называется
преобразованием симметрии относительно
точки О.
На рисунке 19 выполнено преобразование
треугольника АВС в симметричный ему
относительно точки О треугольник А'В'С'.
Если преобразование симметрии относительно точки О переводит фигуру в себя, то фигура называется центрально симметричной, а точка О - ее центром симметрии.
Например, центрально симметричными являются параллелограмм (центром симметрии в нем является точка пересечения диагоналей), окружность с центром в точке О.
2. Симметрия относительно прямой (осевая симметрия).
Пусть
р - фиксированная прямая. Тогда А'
называется симметричной точке А
относительно прямой р, если прямая АА'
перпендикулярна прямой р и ОА' = ОА, где
О - точка пересечения прямых АА' и р (рис.
20).
Если точка А лежит на прямой р, то симметричная ей точка есть сама точка А. Точка, симметричная точке А', есть точка А.
Пусть Р - данная фигура и р - фиксированная прямая. Преобразование фигуры Р в фигуру Р', при котором каждая точка А фигуры Р переходит в точку А' фигуры Р', симметрично относительно прямой р, называется преобразованием симметрии относительно прямой?. При этом фигуры Р и Р' называются симметричными относительно прямой р. На рисунке 20 изображены треугольники АВС и А'В'С', симметричные относительно прямой р.
Если преобразование симметрии относительно прямой р переводит фигуру Р в себя, то фигура называется симметричной относительно прямой р, прямая р называется осью симметрии фигуры. Например, осями симметрии прямоугольника являются прямые, проходящие через точку пересечения его диагоналей параллельно сторонам.
3. Гомотетия.
ПустьF
- данная
фигура и О
-
фиксированная точка (рис. 21). Проведем
через произвольную точку X
фигуры
F
луч
ОХ
и
отложим на нем отрезок ОХ',
равный
kОХ,
где
k
- положительное
число.
Преобразование фигуры F, при котором каждая ее точка X переходит в такую точку X', что ОХ' = kОХ, называется гомотетией относительно центра О. Число k называется коэффициентом гомотетии. Фигуры F и F' называются гомотетичными.
На рисунке 21 четырехугольник А'В'C'D' гомотетичен четырехугольнику ABCD. Центр гомотетии - точка О, а ее коэффициент равен 2.
10. Движения и равенство фигур
Из различных преобразований фигур самыми важными являются такие, при которых сохраняются все их свойства; расстояние между точками, углы, параллельность отрезков, площади и т.д. Оказывается, что для этого достаточно потребовать только сохранения расстояния между точками данной фигуры. Тогда у фигуры, которая получается при преобразовании, сохраняются и все остальные геометрические свойства, так как они зависят от расстояний.
Определение. Преобразование фигуры F в фигуру F', которое сохраняет расстояние между точками, называется движением фигуры F.
Движение сопоставляет любым точкам А и В фигуры Этакие точки А' и В' фигуры F', что АВ = А'В'. В геометрии доказано, что преобразования симметрии относительно точки и прямой, являются движениями. Кроме того, движениями являются параллельный перенос фигуры, поворот фигуры вокруг точки на данный угол.
Движения фигур обладают рядом свойств, некоторые из которых мы сформулируем, не доказывая.
1. При движении точки, лежащие на прямой, переходят в точки, лежащие на прямой, и сохраняется порядок их взаимного расположения.
2. Отрезок движением переводится в отрезок, луч переходит в луч, прямая - в прямую.
3. Треугольник движением переводится в треугольник.
4. Движение сохраняет величины углов.
5. Преобразование, обратное движению, также является движением. В геометрии движения играют важную роль. Изменяя расположение фигур на плоскости, они не меняют ни их размеры, ни их формы. С точки зрения геометра, фигуры, отличающиеся лишь своим положением на плоскости, совершенно одинаковы, именно поэтому они называются равными (или конгруэнтными). Ни одно свойство геометрической фигуры не отличается от соответствующего свойства равной ей фигуры. Например, равные треугольники имеют не только соответственно равные стороны и углы, но и соответственно равные медианы, высоты, площади и т.д.
Определение. Фигура F равна фигуре F', если фигуру F' можно получить некоторым движением фигуры F.
Используя понятие взаимно однозначного соответствия, это определение можно сформулировать так: фигуры F и F' называются равными, если между их точками существует такое взаимно однозначное соответствие, что отрезки, соединяющие соответственные точки, равны.
Устанавливая равенство отрезков, углов, треугольников и других фигур, нет необходимости преобразовывать одну фигуру в другую. Достаточно сравнить те размеры фигур, которые их однозначно определяют. Например, у треугольников сравнить расстояния между вершинами, т.е. длины сторон.
Когда же рассматривают произвольные фигуры, необходимо определение их равенства через движение.
Нетрудно убедиться в том, что равенство фигур рефлексивно, симметрично и транзитивно, т.е. является отношением эквивалентности. Поэтому это отношение порождает на множестве геометрических фигур классы эквивалентности, содержащие равные между собой фигуры. С позиций геометрии такие фигуры неразличимы и их можно принять за одну и ту же фигуру. Именно поэтому можно сказать, что задача построения прямоугольника по двум сторонам а и b имеет только одно решение.
Сказанное позволяет уточнить наше понимание предмета геометрии - она изучает свойства фигур, не зависящие от их расположения. Или, другими словами, геометрия изучает те свойства фигур, которые сохраняются при движениях.