Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МЕДИЦИНСКАЯ МИКРОБИОЛОГИЯ 2011.doc
Скачиваний:
5755
Добавлен:
05.02.2016
Размер:
5.38 Mб
Скачать

5.8.1. Трансформация

Трансформацияэто перенос генетической информации из донорской клетки в реципиентную при помощи искусственно выделенной или высвободившейся при лизисе клетки естественным путем ДНК.

Путем трансформации в реципиентную клетку можно передать следующие свойства: капсулообразование, устойчивость к антибиотикам, устойчивость к сульфаниламидным препаратам, способность синтезировать различные аминокислоты и др.

Наибольшей трансформирующей активностью обладает нативная ДНК. Трансформирующая роль ДНК была установлена в опытах О.Эвери, К.Мак-Леод и М.Мак-Карти в 1944 г. в пробирках с использованием очищенной ДНК, полученной из капсульных клеток пневмококков IIIS типа.

Началом в изучении трансформации послужили опыты Ф.Гриффитса с культурами пневмококка. Пневмококки способны к диссоциации, образуя капсульные S-формы и бескапсульные R-формы. Когда пневмококки в R-форме попадают в организм животного, например мыши, то животное переносит заражение вследствие поглощения бактериальных клеток фагоцитами. Однако мышь, зараженная бактериями S-типа, неизбежно погибает из-за наличия капсулы, препятствующей фагоцитозу. В 1928 г. Фредерик Гриффитс показал, что если мыши ввести пневмококки типа IIR вместе с убитыми нагреванием бактериями типа IIIS, то мыши погибают от инфекции. Исследование выделенных от погибших животных культур показало, что они принадлежат к типу IIIS. Контрольные эксперименты продемонстрировали, что по отдельности ни введение живых R-форм, ни инъекция убитых нагреванием пневмококков IIIS не приводит к гибели мышей. Гриффитс заключил, что непатогенные клетки штамма IIR могут трансформироваться в патогенные убитыми нагреванием пневмококками штамма IIIS. Далее было обнаружено, что трансформация непатогенных штаммов пневмококка в патогенные может осуществляться и в лабораторной культуре клеток.

Было высказано предложение, что трансформирующим агентом, передающим способность вырабатывать капсулы, является полисахаридная субстанция капсул. Позднее в бесклеточных структурах – в экстрактах капсульных бактерий – был выявлен фактор трансформации. Он оказался чувствительным к нагреванию (80оС) и осаждался спиртом.

Эвери, Мак-Леод и Мак-Карти доказали, что трансформирующий фактор устойчив к РНКазе, действию протеолитических ферментов, но чувствителен к ДНКазе, обладает высокой молекулярной массой. Отсюда они пришли к выводу, что этот фактор – ДНК.

Трансформация проходит в несколько этапов.

Первоначально происходит адсорбция ДНК на поверхности реципиентной клетки. Чаще всего с донорской ДНК в реципиентную клетку передается только один ген. Это связано с невозможностью передачи при трансформации протяженного фрагмента ДНК (обычно он не превышает 1/100 длины нуклеоида), т. е. включает один ген или одну группу сцепления. Чем выше гомологичность цепей ДНК донора и реципиента, тем эффективнее гибридизация.

Затем следует энергозависимая стадия – донорская ДНК проникает в реципиентную клетку, причем реципиентная клетка должна быть жизнеспособной с активным обменом веществ, должна находиться в стадии «компетентности», т.е. в ней появляется особый белок – «фактор компетентности». Он располагается в оболочке и цитоплазматической мембране бактерий. Этот фактор связывается с ДНК донорской клетки за счет разницы в зарядах.

Далее происходит специфическое взаимодействие (синапс) – соединение, а затем и встраивание ДНК донора в ДНК реципиента. Данный процесс осуществляется с помощью ферментов рекомбиназ (по типу общей рекомбинации). 50% проникшей ДНК распадается, часть превращается в однонитчатую. В компетентной клетке также образуются однонитчатые разрывы в ДНК реципиента. ДНК донорской клетки включается в ДНК реципиента и формируются участки гибридной двойной спирали ДНК.

После этого происходит репликация ДНК реципиента с включенным участком ДНК донора и образование клетки с новыми свойствами.