
- •Гоу впо Тверская гма Росздрава
- •Содержание
- •Список сокращений
- •Предисловие
- •Модуль I «Морфология микроорганизмов»
- •I. Вопросы для самоподготовки:
- •II. Базовый текст
- •1. Правила работы в учебной бактериологической лаборатории
- •2. Мир микробов. Особенности строения про- и эукариотической клетки
- •3. Систематика и номенклатура микроорганизмов
- •4. Морфология и ультраструктура бактериальной клетки
- •Цитоплазма Капсула Ворсинки (пили) Мезосома
- •Цитоплазмамическая мембрана
- •Периплазматическое пространство
- •5. Основные формы бактерий
- •6. Микроскопический метод диагностики инфекционных заболеваний
- •7. Простые и сложные методы окраски
- •8. Механизмы окрасок по Граму и Цилю-Нильсену
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Тема 2: Специальные методы окраски. Устройство биологического микроскопа. Виды
- •I. Вопросы для самоподготовки:
- •II. Базовый текст
- •1. Специальные методы окраски для выявления отдельных структур бактерий
- •2. Методы окраски отдельных групп про- и эукариот
- •3. Изучение подвижности микроорганизмов
- •4. Виды микроскопии
- •5. Устройство биологического микроскопа
- •6. Порядок проведения иммерсионной микроскопии
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Тема 3: Морфология и ультраструктура отдельных групп микроорганизмов: риккетсий, хламидий, микоплазм, актиномицет, спирохет, грибов, простейших
- •I. Вопросы для самоподготовки:
- •II. Базовый текст
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Теоретические вопросы для рубежного контроля знаний
- •Перечень практических навыков
- •Модуль ιι «Физиология микроорганизмов»
- •I. Вопросы для самоподготовки:
- •II. Базовый текст
- •1. Состав и требования, предъявляемые к питательным средам
- •2. Классификация питательных сред
- •3. Понятия асептики и антисептики
- •4. Понятие дезинфекции, методы дезинфекции и контроль эффективности дезинфекции
- •5. Понятие стерилизации, методы, аппаратура и режимы стерилизации
- •6. Методы определения эффективности стерилизации
- •7. Понятие о виде, штамме, колонии, чистой культуре микроорганизмов
- •8. Методы выделения чистых культур микроорганизмов
- •9. Бактериологический метод диагностики инфекционных заболеваний
- •10. Техника посева микроорганизмов
- •11. Особенности культивирования анаэробных бактерий
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Диагностике инфекционных заболеваний.
- •I этап.
- •II этап. Цель: накопление чистой культуры
- •III этап. Цель: идентификация исследуемой культуры
- •IV этап.
- •Тема 2: Физиология бактерий. Питание, дыхание, размножение, метаболизм и ферментные системы бактерий. Бактериологический метод диагностики инфекционных заболеваний (2-й день).
- •I. Вопросы для самоподготовки:
- •II. Базовый текст
- •1. Метаболизм микроорганизмов
- •2. Ферментные системы микроорганизмов
- •3. Классификация бактерий по типу питания. Источники углерода, азота, макро- и микроэлементов, ростовых факторов для микробов.
- •4. Механизмы питания бактерий
- •5. Классификация микроорганизмов в зависимости от источника энергии
- •6. Классификация бактерий по типу дыхания - биологического окисления.
- •7. Брожение и его виды
- •8. Условия культивирования бактерий
- •9. Рост и размножение бактерий. Фазы размножения бактерий
- •10. Бактериологический метод исследования. Проведение 2 этапа бактериологического метода выделения аэробов. Культуральные свойства бактерий.
- •III. План практической работы
- •4. Заполнить таблицу « Классификация микроорганизмов по типам дыхания»
- •IV. Примеры ситуационных задач
- •Тема 3: Идентификация чистых культур. Биохимическая активность бактерий. Бактериологический метод диагностики инфекционных заболеваний (3-день).
- •1. Проведение III этапа бактериологического метода выделения чистых культур микроорганизмов. Схема идентификации микроорганизмов
- •2. Определение чистоты выделенной культуры
- •3. Использование ферментативной активности бактерий для идентификации микроорганизмов
- •4. Методы определения гликолитической активности микроорганизмов
- •5. Методы определения протеолитической активности бактерий
- •6. Определение окислительно-восстановительных ферментов бактерий
- •7. Системы для биохимической идентификации бактерий
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Модуль III «Основы антибактериальной химиотерапии»
- •2. Механизмы действия антибиотиков на микроорганизмы
- •3. Побочное действие антибиотиков
- •4. Механизмы антибиотикорезистентности микроорганизмов
- •5. Методы определения чувствительности микроорганизмов к антибиотикам
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •III модуль «Инфекция и инфекционный процесс»
- •Тема 2: Инфекционный процесс. Факторы патогенности бактерий. Биологический метод диагностики инфекционных заболеваний
- •Базовый текст
- •1. Учение об инфекции. Понятия «инфекция» и «инфекционное заболевание»
- •3. Классификации инфекционных заболеваний и форм инфекций
- •4. Периоды и исходы инфекционного заболевания
- •5. Патогенность и вирулентность, единицы вирулентности
- •6. Основные факторы патогенности микроорганизмов
- •7. Микробные токсины
- •8. Биологический метод диагностики инфекционных заболеваний
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •III модуль «Экология микроорганизмов. Основы санитарной микробиологии»
- •Тема 3:Микрофлора организма человека. Санитарно-бактериологическое исследование воды, воздуха, почвы
- •I. Вопросы для самоподготовки:
- •II.Базовый текст
- •2. Функции нормальной микрофлоры организма человека
- •3. Методы определения микрофлоры организма человека
- •4. Определение понятия дисбактериоз и причины его возникновения
- •5. Принципы диагностики и лечения дисбактериоза
- •6. Предмет санитарной микробиологии и требования, предъявляемые к санитарно-показательным микроорганизмам
- •7. Микрофлора воды, воздуха и почвы
- •8. Методы определения санитарно-показательных микроорганизмов воды, воздуха и почвы
- •III. План практической работы
- •IV. Примеры ситуационных задач
- •Теоретические вопросы для рубежного контроля знаний
- •Перечень практических навыков
- •Литература
11. Особенности культивирования анаэробных бактерий
Важным условием, которое необходимо соблюдать на всех этапах выделения и идентификации анаэробов, является защита этих микробов от токсического действия молекулярного кислорода. Время между взятием материала и его посевом на питательные среды должно быть максимально коротким.
Анаэробные бактерии можно культивировать только на специальных бескислородных средах с низким окислительно-восстановительным потенциалом (10 – 150мВ). Для контроля за степенью насыщения этих сред кислородом используют специальные редокс – индикаторы (метиленовый синий, резазурин), восстановленные формы которых бесцветны. При возрастании окислительно-восстановительного потенциала (ОВП) метиленовый синий окрашивает среды в синий, а резазурин – в розовый цвет, что указывает на непригодность таких сред для культивирования облигатных анаэробов. Для сохранения низкого ОВП питательные среды должны быть агаризированы. Добавление даже 0,05% агара повышает их вязкость и уменьшает аэрацию.
Анаэробный тип энергетического метаболизма во много раз менее продуктивный, чем аэробный, поэтому питательные среды для анаэробов должны быть богаче питательными субстратами и витаминами. В практических лабораториях для выделения анаэробов из патологического материала чаще всего используют среду для контроля стерильности крови (СКС), среду Китта-Тароцци, анаэробный кровяной агар (на основе эритрит-агара или агара Д), среду Вильсона – Блера, среду Шедлера и др. Эти свежеприготовленные питательные среды должны быть использованы для посева в течение 2-х часов.
Методы создания анаэробных условий. Создание анаэробных условий достигается с помощью физических, химических, биологических и смешанных методов.
Физические методы. Основаны на выращивании микроорганизмов в безвоздушной среде, что достигается:
1. посевом в среды, содержащие редуцирующие и легко окисляемые вещества; В качестве редуцирующих веществ обычно используют кусочки (около 0,5 г) животных тканей (печень, мозг, почки, селезенка, кровь). Эти ткани связывают растворенный в среде кислород и адсорбируют бактерии. Чтобы уменьшить содержание кислорода в питательной среде, ее перед посевом кипятят 10-15 мин, а затем быстро охлаждают и заливают сверху небольшим количеством стерильного вазелинового масла. В качестве легко окисляемых веществ используют глюкозу, лактозу и муравьинокислый натрий. Лучшей жидкой питательной средой с редуцирующими веществами является среда Китта-Тароцци, которая используется для накопления анаэробов при первичном посеве из исследуемого материала и для поддержания роста выделенной чистой культуры анаэробов.
2. посевом микроорганизмов в глубину плотных питательных сред. Посев микроорганизмов в глубину плотных сред производят по методам Вейнберга и Виньяль-Вейона.
Метод Вейнберга. 1-2 капли материала со среды Кита-Тароцци вносят в пробирку с МПБ для разведения. Затем пастеровской пипеткой с запаянным концом переносят материал последовательно в 3-5 узких пробирок с сахарным МПА, предварительно расплавленным и прокипяченным в течение 20 мин и остуженным до 50°С, погружая капилляр пипетки в расплавленный агар до дна пробирки. Засеянные пробирки быстро охлаждают под струей холодной воды, при этом агар застынет и зафиксирует разобщенное положение отдельных микробных клеток. Инкубируют в анаэробных условиях. Через сутки отбирают колонии, на уровне колонии пробирку распиливают, колонию отсасывают пипеткой и переносят в среду Китта-Троцци для накопления и идентификации.
Метод Виньяль-Вейона состоит в механической защите посевов анаэробов от кислорода воздуха. Проводиться в пастеровских пипетках. Пастеровские пипетки представляют собой длинные трубки (20-25 см) диаметром около 5 мм, приготовленные из легкоплавкого стекла. Один конец пипетки открыт, а другой вытянут в виде капилляра и запаян. Исследуемый материал разводят полужидким агаром с небольшим содержание глюкозы, затем из каждого разведения насасывают агар в стерильную пастеровскую пипетку, предварительно обломив запаянный конец капилляра, и избегая попадания пузырьков воздуха. Затем капилляр запаивают и пипетки помещают в термостат. Так создаются благоприятные условия для роста самых строгих анаэробов. Через 24-48 часов в среде можно обнаружить ясно видимые колонии бактерий в виде пушинок, комочков ваты, зерен чечевицы и т.д. Для выделения отдельной колонии трубку надрезают напильником, соблюдая правила асептики, на уровне колонии, ломают, а колонию захватывают стерильной петлей и переносят в пробирку с питательной средой для дальнейшего выращивания и изучения в чистом виде.
3. механическим удалением воздуха из сосудов, в которых выращиваются анаэробные микроорганизмы; Удаление воздуха производят путем его механического откачивания их специальных приборов - анаэростатов, в которые помещают чашку с посевом анаэробов. Переносной анаэростат представляет собой толстостенный металлический цилиндр с хорошо притертой крышкой (с резиновой прокладкой), снабженный отводящим краном и вакуумметром. После размещения засеянных чашек или пробирок воздух из анаэростата удаляют с помощью вакуумного насоса.
4. заменой воздуха в сосуде каким-либо индифферентным газом. Замену воздуха индифферентным газом (азотом, водородом, аргоном, С02) можно производить в анаэростатах путем вытеснения его газом из баллона.
Приборы и среды для культивирования анаэробов:
Микроанаэростат – используется для создания вакуума с дозированным содержанием кислорода. Прибор представляет собой герметически закрывающийся сосуд, снабженный манометром, в который помещают посевы и откачивают воздух. Микроанаэростат помещают в термостат.
Эксикатор – стеклянный лабораторный сосуд с притертой крышкой. В его донной части имеется дополнительная емкость, куда наливается смесь пирогаллола и едкого натра или гидросульфита натрия и двууглекислой соды. На сетку-подставку помещают посевы и притирают крышку с помощью вазелина. Эксикатор помещают в термостат.
Газ-пак
(Generbag
anaer).
Для
создания анаэробных условий используются
газогенераторные пакеты с реагентами
- GasPak,
GasPak
Plus
(газогенераторный пакет с
палладиевым
катализатором) и другие.
Винтовой зажим с герметичной прокладкой
Катализатор
Газогенераторный пакет
Чашки Петри
Рис. 8 Газогенераторные пакеты
Система Generbag anaer состоит из воздухонепроницаемых емкостей, изготовленных из прозрачной пластмассы и генераторов, содержащих смесь веществ, поглощающих кислород (рис. 8). При применении GasPak Plus необходимо увлажнить таблетку боргидрида натрия, при этом выделяется водород и в присутствии палладиевого катализатора он соединяется с кислородом с образованием воды. Последовательность работы: вынуть генератор из пакета, поместить в нижнюю часть воздухонепроницаемого пакета, затем поместить чашки (или пробирки) с посевами и закрыть пакет. Инкубация при 37°С.
Анаэробный бокс – прозрачная плексиглассовая камера со шлюзом, отверстиями для рук с рукавами, заканчивающимися резиновыми перчатками. В нем создаются стерильные условия, его заполняют газовой смесью и поддерживают температуру 37°С.
Среда Китта-Тароцци. Содержит мясо-пептонный бульон (МПБ), 0,5% глюкозы и 0,15% агара. На дно пробирки для адсорбции О2 помещают кусочки вареной печени или фарша слоем 1-1,5 см и заливают 6-7 мл среды. Среду перед посевом регенерируют (прогревают 15-20 мин на водяной бане для удаления воздуха, а затем быстро охлаждают). После посева среду заливают вазелиновым маслом и помещают в термостат.
Полужидкий сахарный агар (высокий столбик). В пробирку с 6-7 мл расплавленного и охлажденного до 40-450 полужидкого питательного агара, содержащего 0,5-1% глюкозы, вносят исследуемый материал и перемешивают. Посевы помещают в термостат.
Химические методы. Основаны на поглощении кислорода воздуха в герметически закрытом сосуде (анаэростате, эксикаторе) такими веществами, как пирогаллол или гидросульфит натрия.
1. Применение щелочных растворов пирогаллола для поглощения кислорода в замкнутой воздушной среде.
2. Можно применять гидросульфит натрия. Для связывания кислорода в 1 л объема берут 100 мл свежеприготовленного 20% раствора Na2S204и 16 мл 50% КОН.
3. Использование веществ - редуцентов, к которым относятся тиогликолевая кислота или тиогликолат натрия (0,01-0,02%), аскорбиновая кислота (0,1%), различные сахара (0,1-3%), цистин и цистеин (0,03-0,05%), муравьинокислый натрий (0,25-0,75%) и др.
Применение газогенерирующих систем для создания анаэробных условий в замкнутой воздушной среде (микроанаэростатах, эксикаторах, прозрачных газонепроницаемых пластиковых пакетах). Для образования водорода и двуокиси углерода, необходимых для роста облигатных анаэробов, используют специальные таблетки, которые активируются добавлением воды. Водород, генерируемый таблетками боргидрида натрия, связывает кислород воздуха в присутствии палладиевого катализатора с образованием воды. Углекислый газ вырабатывается при взаимодействии лимонной кислоты с бикарбонатом натрия.
Биологические методы
1.Совместное выращивание анаэробов и аэробов (метод Фортнера). При этом на одну половину чашки Петри с плотной питательной средой засевают исследуемый материал, а на другую - культуру аэробного микроорганизма, способного энергично поглощать кислород. После посева чашку закрывают крышкой, края которой для герметизации заливают парафином или заклеивают пластилином. В качестве активного поглотителя кислорода из замкнутого пространства часто используют культуру “чудесной палочки” (Serratia marcescens), которая является своеобразным индикатором качества анаэробиоза. При недостаточной герметизации чашки этот микроорганизм образует ярко-красный пигмент, а при сохранении строго анаэробных условий вырастают бесцветные или бледно-розовые колонии.
2. Помещение в питательную среду кусочков печени, головного мозга, почек и других внутренних органов. При этом тканевые клетки активно поглощают и адсорбируют на себе кислород, в результате чего в среде создаются анаэробные условия. Примером питательной среды, сконструированной по этому принципу, является содержащая кусочки печени среда Китта – Тароцци. К тому же в печеночной ткани содержится большое количество веществ с SH-группой (цистеин, глютатион и др.), обладающих сильным редуцирующим действием.
3. Культуры некоторых облигатных анаэробов можно поддерживать путем пассажа на лабораторных животных, однако в настоящее время этот метод используется достаточно редко.
Комбинированные методы основаны на сочетании физических, химических и биологических методов создания анаэробиоза, и используются в большинстве практических лабораторий. Для работы с наиболее чувствительными к молекулярному кислороду анаэробами используют строгую анаэробную технику (метод Хангейта). Принцип метода заключается в использовании лишенных кислорода питательных сред, воздух над которыми удаляется и замещается бескислородным газом.