
- •Пермский Государственный Технический Университет
- •Введение
- •1. Теория множеств
- •1.1 Понятие множества
- •1.2.Операции над множествами
- •1.3.Диаграммы Эйлера - Венна
- •1.4. Алгебра множеств
- •1.5. Кортеж. График
- •1.6. Соответствия
- •2 3 4 5
- •1.7. Отношения
- •1.7.1 Отношение эквивалентности
- •1.7.2.Отношения порядка
- •1.7.3. Морфизмы
- •1.8. Решетки
- •1.8.1. Диаграммы Хассе
- •1.8.2. Понятие решетки
- •1.8.3. Алгебраическое представление решеток. Булевы решетки
- •1.8.4. Подрешетки
- •1.9.4.Мощность множества r. Теорема Кантора
- •1.9.5. Арифметика бесконечного
- •2.1.1.Операции над высказываниями
- •2.1.2.Построение и анализ сложных высказываний
- •2.1.3.Алгебра высказываний
- •2.1.4.Формы представления высказываний
- •2.1.5.Преобразование высказываний
- •2.1.6.Минимизация высказываний методом Квайна
- •2.1.7.Минимизация с помощью карт Вейча
- •2.1.8.Функциональная полнота
- •2.2.Логика предикатов
- •2.2.1.Основные равносильности для предикатов
- •2.2.2.Получение дизъюнктов
- •2.3.Аксиоматические теории
- •2.3.1.Аксиоматическая теория исчисления высказываний
- •2.3.2.Непротиворечивость и полнота аксиоматической теории исчисления высказываний
- •2.4.Аксиоматические теории первого порядка
- •2.5.Метод резолюций
- •2.6.Система Генцена
- •2.7.Система Аристотеля
- •2.8. Примеры неклассических логик
- •3. Теория Автоматов
- •3.1.Понятие автомата
- •Законы функционирования автоматов
- •3.2.Примеры автоматов
- •3.3.Минимизация автоматов
- •3.4.Особенности минимизации автомата Мура
- •3.5.Переход от автомата Мура к автомату Мили и наоборот
- •4.Теория графов
- •4.1. Понятие графа
- •4.2.Теорема Эйлера
- •4.3.Полные графы и деревья
- •4.4.Деревья
- •4.5.Алгоритм Краскала
- •4.6.Планарные графы
- •4.7.Задача о 4 красках
- •4.8.Определение путей в графе
- •4.9.Приведение графа к ярусно-параллельной форме
- •4.10.Внутренняя устойчивость графа
- •4.11.Множество внешней устойчивости. Ядро графа
- •4.12.Клика
- •5. Теория групп
- •5.1.Понятие группы
- •5.2.Морфизмы групп
- •5.3.Инвариантные (нормальные) подгруппы
- •5.4.Группа Диэдра (d3)
- •5.5.Смежные классы
- •5.6.Фактор-группы
- •5.7.Группа Клейна четвертой степени
- •6. Теория алгоритмов
- •6.1.Понятие алгоритма
- •6.2.Конкретизация понятия алгоритма
- •6.3.Сложность вычислений
- •6.4.Машины Тьюринга
- •6.5.Нормальные алгорифмы Маркова
- •6.6.Рекурсивные функции
- •6.7.-Исчисление
- •7.Формальные грамматики
- •7.1. Понятие формальной грамматики
- •7.2.Деревья вывода
- •7.3.Классификация языков по Хомскому
- •7.4.Распознающие автоматы
- •7.5.Понятие транслятора
- •7.6.Основные функции компилятора. Лексический анализ
- •7.7.Переход от недетерминированного распознающего автомата к детерминированному
- •7.8.Переход от праволинейной грамматики к автоматной
- •7.9.Lex
- •7.10.Детерминированные автоматы с магазинной памятью (мп-автоматы)
- •7.11.Транслирующие грамматики
- •7.12. Sи q - грамматики
- •7.13.Ll(1) - грамматики. (left - leftmost)
- •7.14.Метод рекурсивного спуска
- •7.15.Lr - грамматики (left - rightmost)
- •7.16.Функции предшествования
- •7.17.Атрибутные грамматики
- •7.18.Yacc
- •7.19.Область действия и передача параметров
- •7.20.Генерация выходного текста. Польская инверсная запись
- •7.21.Оптимизация программ
- •8. Функциональное программирование
- •9. Логическое программирование. Язык Пролог
- •10. Объектно-ориентированное программирование
- •Заключение
- •Литература
7.10.Детерминированные автоматы с магазинной памятью (мп-автоматы)
Есть «промежуточная» математическая модель между автоматами и контекстно-свободными грамматиками – автомат с магазинной памятью. (МП-автомат).
Существует достаточно распространенная задача – задача определения парности скобок. Однако ее нельзя представить автоматной грамматикой.
Соответсвующая грамматика может выглядеть следующим образом:
S(S)
SSS
S
МП-автомат состоит из входной ленты, в ячейках которой записывается анализируемая строка (┤-конец строки), устройства управления и разбитого на ячейки магазина (стека).- символ пустого магазина. Устройство управления автомата может )."помнить" состояние (S1…).
Требуется распознать: ( ( ) ( ) )
( ( ) ( ) ) ┤
Работу автомата можно описать программой.
S1 |
X |
|
( |
X |
X |
) |
|
|
┤ |
|
+ |
Здесь и далее используются обозначения:
- поместить строку в вершину магазина.
- заменить верхний символ магазина
на строку.
- убрать символ из вершины магазина.
- сдвинуться на шаг вправо по входной строке.
>< - стоять на месте.
- отвергнуть.
+ - принять.
S - State - состояние МП-автомата (на каждое состояние своя таблица, здесь одно состояние S1).
[S1] ( ( ) ( ) ) ┤
x[S1] ( ( ) ( ) )┤
xx[S1] ( ( ) ( ) )┤
x[S1] ( ( ) ( ) )┤
xx[S1] ( ( ) ( ) )┤
x[S1] ( ( ) ( ) )┤
[S1] ( ( ) ( ) ) ┤
Задача распознавания вложенных скобок "типа матрешка" сложнее и для ее распознавания требуется МП-автомат с двумя состояниями:
( ( ( ) ) )
S2 |
X |
|
( |
|
|
) |
S2 |
|
┤ |
|
+ |
S1 |
X |
|
( |
S1X |
S1X |
) |
S2 |
|
┤ |
|
+ |
При встрече первой закрывающей скобки МП автомат меняет состояние S1 на состояние S2.
7.11.Транслирующие грамматики
В этих грамматиках присутствует элемент аттракциона - транслирующая грамматика не только анализирует входное слово: но и транслирует его. В большинстве практических случаев эти процессы разделяют, поэтому-то такие грамматики можно рассматривать как некий казус.
1. E E + T. 1. EE + T{+}.
2. E T. 2. ET.
3. T T * P. 3. TT * P{*}
4. T P. 4. TP.
5. P (E). 5. P(E).
6. P a. 6. Pa{a}.
7. P b. 7. Pb{b}.
8. P c. 8. Pc{c}.
Проанализируем строку
(a + b) * c
1. E TT * PP * P(E) * P(E + T) * P.
E TT * P{*}P * P{*}
(E) * P{*} (E + T{+}) * P{*}(a{a} + b{b}) * c{c}{*}
Если выделить символы, заключенные в фигурные скобки, то получится исходное выражение, оттранслированное в постфиксную запись.
ab + c *