Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
43
Добавлен:
16.04.2013
Размер:
976.9 Кб
Скачать

2.1.4.Формы представления высказываний

1. Форма А1 А2 ...Аn, где Аi,- элементарное высказывание или отрицание элементарного высказывания (литерал), называетсяэлементарной дизъюнкцией.

2. Форма B1 B2 ...Bn, где Bi- литерал, называетсяэлементарной конъюнкцией.

3. Форма D1 D2 ...Dn, где Dj- элементарная дизъюнкция, называетсяконъюнктивной нормальной формой (КНФ).

4. Форма K1 K2 ...Kn, где Kj- элементарная конъюнкция, называетсядизъюнктивной нормальной формой (ДНФ).

Всегда истинное (на любых наборах значений входящих в него элементарных высказываний) сложное высказывание называется тавтологией.

Всегда ложное (на любых наборах значений входящих в него элементарных высказываний) высказывание называется противоречием.

Совершенной КНФ (СКНФ)называется такая КНФ, что каждая входящая в нее элементарная дизъюнкция содержит все элементарные высказывания прямо или с инверсией строго по одному разу. Нет повторяющихся дизъюнкций. Любое сложное высказывание, кроме тавтологии, имеет единственную СКНФ.

Совершенной ДНФ (СДНФ)называется такая ДНФ, что каждая входящая в нее элементарная конъюнкция содержит все элементарные высказывания прямо или с инверсией строго по одному разу. Нет повторяющихся конъюнкций. Любое сложное высказывание, кроме противоречия, имеет единственную СДНФ.

2.1.5.Преобразование высказываний

Сложное высказывание, представленное в произвольном виде с помощью равносильностей с 11 по 16, а также с использованием законов Де Моргана могут быть преобразованы к нормальной форме.

Преобразование КНФ в СКНФ.

Схематично основную идею преобразования можно представить так:

X Y≡XY0≡XYZZ≡(XYZ)(XYZ)

Преобразование ДНФ в СДНФ.

Схематично основную идею преобразования можно представить так:

XY≡XY1≡XY(ZZ)≡XYZXYZ

Преобразование СДНФ в СКНФ и наоборот.

Рассмотрим на примере:

Возьмем логическую функцию f (сложное высказывание) в СДНФ и построим отрицание этой функции, т.е. функцию f, путем выписывания всех конституент единицы, не входящих в f.

Примеры:

Пусть f имеет вид

f=X1X2X3X1X2X3X1X2X3X1X2X3

3 5 6 7

(мнемонический прием – приписать конституентам числа, которые получаются, если посмотреть на конституенты как на двоичные числа)

Отрицание функци f получим выписыванием недостающих конституент (недостающих двоичных чисел).

f=X1X2X3X1X2X3X1X2X3X1X2X3

0 1 2 4

Атеперь применим отрицание к функции f.

f = X1X2X3X1X2X3X1X2X3X1X2X3

≡ (X1X2X3)(X1X2X3)(X1X2X3)(X1X2X3) – СКНФ (функции f).

Пример 2:

f=XYZXYZXYZXYZXYZXYZ

2 7 0 5 4 3

f= XYZXYZ≡(XYZ)(XYZ)

6 1

Переход от СКНФ к СДНФ.

Возьмем логическую функцию f в СКНФ и построим отрицание этой функции, т.е. функцию f, путем выписывания всех конституент нуля, не входящих в f.

Пусть f имеет вид

f=(XYZ)(XYZ)

f=(XYZ)(XYZ)(XYZ)(XYZ)(XYZ)(XYZ)≡

≡XYZXYZXYZXYZXYZXYZ

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке много всякого