- •Пермский Государственный Технический Университет
- •Введение
- •1. Теория множеств
- •1.1 Понятие множества
- •1.2.Операции над множествами
- •1.3.Диаграммы Эйлера - Венна
- •1.4. Алгебра множеств
- •1.5. Кортеж. График
- •1.6. Соответствия
- •2 3 4 5
- •1.7. Отношения
- •1.7.1 Отношение эквивалентности
- •1.7.2.Отношения порядка
- •1.7.3. Морфизмы
- •1.8. Решетки
- •1.8.1. Диаграммы Хассе
- •1.8.2. Понятие решетки
- •1.8.3. Алгебраическое представление решеток. Булевы решетки
- •1.8.4. Подрешетки
- •1.9.4.Мощность множества r. Теорема Кантора
- •1.9.5. Арифметика бесконечного
- •2.1.1.Операции над высказываниями
- •2.1.2.Построение и анализ сложных высказываний
- •2.1.3.Алгебра высказываний
- •2.1.4.Формы представления высказываний
- •2.1.5.Преобразование высказываний
- •2.1.6.Минимизация высказываний методом Квайна
- •2.1.7.Минимизация с помощью карт Вейча
- •2.1.8.Функциональная полнота
- •2.2.Логика предикатов
- •2.2.1.Основные равносильности для предикатов
- •2.2.2.Получение дизъюнктов
- •2.3.Аксиоматические теории
- •2.3.1.Аксиоматическая теория исчисления высказываний
- •2.3.2.Непротиворечивость и полнота аксиоматической теории исчисления высказываний
- •2.4.Аксиоматические теории первого порядка
- •2.5.Метод резолюций
- •2.6.Система Генцена
- •2.7.Система Аристотеля
- •2.8. Примеры неклассических логик
- •3. Теория Автоматов
- •3.1.Понятие автомата
- •Законы функционирования автоматов
- •3.2.Примеры автоматов
- •3.3.Минимизация автоматов
- •3.4.Особенности минимизации автомата Мура
- •3.5.Переход от автомата Мура к автомату Мили и наоборот
- •4.Теория графов
- •4.1. Понятие графа
- •4.2.Теорема Эйлера
- •4.3.Полные графы и деревья
- •4.4.Деревья
- •4.5.Алгоритм Краскала
- •4.6.Планарные графы
- •4.7.Задача о 4 красках
- •4.8.Определение путей в графе
- •4.9.Приведение графа к ярусно-параллельной форме
- •4.10.Внутренняя устойчивость графа
- •4.11.Множество внешней устойчивости. Ядро графа
- •4.12.Клика
- •5. Теория групп
- •5.1.Понятие группы
- •5.2.Морфизмы групп
- •5.3.Инвариантные (нормальные) подгруппы
- •5.4.Группа Диэдра (d3)
- •5.5.Смежные классы
- •5.6.Фактор-группы
- •5.7.Группа Клейна четвертой степени
- •6. Теория алгоритмов
- •6.1.Понятие алгоритма
- •6.2.Конкретизация понятия алгоритма
- •6.3.Сложность вычислений
- •6.4.Машины Тьюринга
- •6.5.Нормальные алгорифмы Маркова
- •6.6.Рекурсивные функции
- •6.7.-Исчисление
- •7.Формальные грамматики
- •7.1. Понятие формальной грамматики
- •7.2.Деревья вывода
- •7.3.Классификация языков по Хомскому
- •7.4.Распознающие автоматы
- •7.5.Понятие транслятора
- •7.6.Основные функции компилятора. Лексический анализ
- •7.7.Переход от недетерминированного распознающего автомата к детерминированному
- •7.8.Переход от праволинейной грамматики к автоматной
- •7.9.Lex
- •7.10.Детерминированные автоматы с магазинной памятью (мп-автоматы)
- •7.11.Транслирующие грамматики
- •7.12. Sи q - грамматики
- •7.13.Ll(1) - грамматики. (left - leftmost)
- •7.14.Метод рекурсивного спуска
- •7.15.Lr - грамматики (left - rightmost)
- •7.16.Функции предшествования
- •7.17.Атрибутные грамматики
- •7.18.Yacc
- •7.19.Область действия и передача параметров
- •7.20.Генерация выходного текста. Польская инверсная запись
- •7.21.Оптимизация программ
- •8. Функциональное программирование
- •9. Логическое программирование. Язык Пролог
- •10. Объектно-ориентированное программирование
- •Заключение
- •Литература
4.7.Задача о 4 красках
Это одна из самых знаменитых задач теории графов и математики вообще.
Достаточно ли четырех красок для раскраски любой политической карты мира так, чтобы два государства, имеющие общую границу, были раскрашены в разные цвета?
В качестве иллюстрации можно взять произвольную "карту". Для облегчения анализа представим государства в виде вершин графа. "Раскраску" отобразим цифрами.
Дуги будут говорить о наличии общих границ. Не должно быть дуг, соединяющих вершины с одинаковыми цифрами.
1 2 1
1 2 1
3
3
2
1 1 4 2 1 4
1
Так что задачу можно переформулировать так:
Сколько необходимо красок в планарном графе, чтобы любые две смежные вершины были раскрашены различными цветами?
Теорема:Трех красок мало.
1
Пример доказывает, что 3-х красок мало
4
2 3
Теорема:Для раскраски любого планарного графа достаточно 5-ти красок
Доказательство:
1) Для любого планарного графа с n<=5 теорема справедлива.
2) Пусть любой планарный граф с n вершинами 5-раскрашиваемый.
Докажем справедливость этого и для графа с n+1 вершинами, опираясь на доказанный факт, что в любом плоском графе имеется хотя бы одна вершина степени не выше пяти.Объявим такую вершину n+1-ой.
Если эта вершина имеет степень не
больше четырех , то 5 красок хватит. Но
если степень пять, то из 1-ой вершины
строим все возможные цепи , где чередуются
вершины 1 и 3 :
Здесь возможны два случая:
1). Ни одна из цепей не замкнулась на
третью вершину. Тогда меняем цветами
все 1-ые и 3-ие вершины и n+1 -ю вершину
красим в 3-ий цвет ;
3 3
1 3
1 3
2
5
1
3
4
n
2.) Одна из цепочек замкнулась на 3, тогда из вершины с номером 2 строим цепь 2-4. Ни одна из этих цепей не замкнется на 4-ю вершину (т.к. граф планарный!). Меняем цвета 2 и 4 в этой цепи. И красим n+1-ю вершину в цвет 2.
Таким образом, то, что пяти красок достаточно, доказано.
Возвращаясь к четырем краскам следует сказать, что американскими математиками была доказана теорема, о том, что четырех красок достаточно. Однако,в этом доказательстве есть шаги, связанные с очень большими переборами вариантов, выполненные с использованием компьютера (пойди проверь). Так что с точки зрения «пуританской» математики можно считать, что теорема пока не доказана…