- •1. Общие положения по эксплуатации оборудования
- •1.1. Основные понятия и определения
- •1.2. Служба эксплуатации оборудования и эксплуатационно-ремонтная база
- •1.3. Эксплуатационная документация
- •2. Подготовка оборудования к эксплуатации
- •2.1. Формирование парка оборудования
- •2.2. Приемка оборудования
- •2.3. Транспортирование оборудования
- •2.4. Монтаж и демонтаж оборудования основные этапы монтажных работ
- •Фундаменты под основание
- •Методы и способы монтажа
- •2.5. Пуск оборудования в эксплуатацию. Эксплуатационная обкатка машин
- •3. Режимы работы и эффективность использования оборудования
- •3.1. Сменный, суточный и годовой режимы
- •Работы оборудования
- •3.2. Производительность и норма выработки машин
- •3.3. Стоимость эксплуатации оборудования
- •3.4. Анализ эффективности работы оборудования
- •4. Надежность оборудования и ее изменение при эксплуатации
- •4.1. Показатели надежности оборудования
- •4.2. Общие принципы сбора и обработки
- •Статистической информации о надежности
- •Оборудования при эксплуатации
- •Сбор информации об отказах оборудования
- •Обработка эксплуатационной информации по отказам
- •Оценка надежности оборудования
- •4.3. Поддержание надежности оборудования при эксплуатации
- •На этапе эксплуатации оборудования
- •5. Причины отказов оборудования при эксплуатации
- •5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
- •5.2. Деформация и изломы элементов оборудования
- •5.3. Износ элементов оборудования
- •5.4. Коррозионные разрушения элементов оборудования
- •5.5. Сорбционные разрушения элементов оборудования
- •5.6. Коррозионно-механические разрушения элементов оборудования
- •5.7. Сорбционно-механические разрушения элементов оборудования
- •5.8. Образование на поверхностях оборудования отложений твердых веществ
- •6. Организация технического обслуживания, ремонта, хранения и списания оборудования
- •6.1. Система технического обслуживания и ремонта оборудования
- •Виды технического обслуживания и ремонта оборудования
- •Стратегии то и р оборудования
- •Организация и планирование то и р оборудования по наработке
- •Организация и планирование то и р оборудования по фактическому техническому состоянию
- •6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
- •Жидкие смазочные материалы
- •Пластичные смазочные материалы
- •Твердые смазочные материалы
- •Выбор смазочных материалов
- •Способы смазки машин и смазочные устройства
- •Жидкости для гидравлических систем
- •Тормозные и амортизаторные жидкости
- •Использование и хранение смазочных материалов
- •Сбор отработанных масел и их регенерация
- •6.3. Хранение и консервация оборудования
- •6.4. Гарантийные сроки и списание оборудования
- •Списание оборудования
- •7. Диагностика технического состояния оборудования
- •7.1. Основные принципы технического диагностирования
- •7.2. Методы и средства технической диагностики
- •Средства диагностики технического состояния оборудования
- •Методы и средства диагностического контроля насосных агрегатов
- •Методы и средства диагностического контроля трубопроводной запорной арматуры
- •7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
- •7.4. Методы прогнозирования остаточного ресурса оборудования
- •8. Технологические основы ремонта оборудования
- •8.1. Структура производственного процесса ремонта оборудования
- •Индивидуальным методом
- •8.2. Подготовительные работы для сдачи оборудования в ремонт
- •8.3. Моечно-очистные работы
- •Состав смывок для очистки поверхности от лакокрасочных покрытий
- •8.4. Разборка оборудования
- •8.5. Контрольно-сортировочные работы
- •8.6. Комплектование деталей оборудования
- •8.7. Балансировка деталей
- •8.8. Сборка оборудования
- •8.9. Приработка и испытание агрегатов и машин
- •8.10. Окраска оборудования
- •9 Способы восстановления сопряжений и поверхностей деталей оборудования
- •9.1. Классификация способов восстановления сопряжений
- •9.2. Классификация способов восстановления поверхностей деталей
- •9.3. Выбор рационального способа восстановления поверхностей деталей
- •10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
- •10.1. Восстановление поверхностей наплавкой
- •Ручная газовая наплавка
- •Ручная электродуговая наплавка
- •Автоматическая электродуговая наплавка под слоем флюса
- •Автоматическая электродуговая наплавка в среде защитных газов
- •Автоматическая вибродуговая наплавка
- •10.2. Восстановление поверхностей металлизацией
- •10.3. Восстановление поверхностей гальваническим наращиванием
- •Электролитическое хромирование
- •Электролитическое осталивание
- •Электролитическое меднение
- •Электролитическое никелирование
- •10.4. Восстановление поверхностей деталей пластическим деформированием
- •10.5. Восстановление поверхностей полимерным покрытием
- •Полимерных покрытий:
- •10.6. Восстановление поверхностей механической обработкой
- •10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
- •Соединение деталей пайкой
- •Склеивание деталей
- •11 Типовые технологические процессы ремонта деталей
- •11.1. Ремонт деталей типа валов
- •11.2. Ремонт деталей типа втулок
- •11.3. Ремонт деталей типа дисков
- •Ремонт зубчатых колес
- •Ремонт цепных колес
- •11.4. Ремонт корпусных деталей
- •Ремонтных деталей:
- •Ремонт корпуса вертлюга
- •Ремонтных деталей:
- •Ремонт корпуса крейцкопфа бурового насоса
- •Ремонт клапанных коробок буровых насосов
- •Дополнительных ремонтных деталей:
- •Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
- •Ремонт корпуса турбобура
- •Способом замены части детали:
7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
Дефектоскопия - это область знаний, охватывающая теорию, методы и технические средства определения дефектов в материале контролируемых объектов, в частности в материале деталей машин и элементов металлоконструкций.
Дефектоскопия является составной частью диагностики технического состояния оборудования и его составных частей. Работы, связанные с выявлением дефектов в материале элементов оборудования, совмещаются с ремонтами и техническим обслуживанием или выполняются самостоятельно в период технического осмотра. Для выявления скрытых дефектов в конструкционных материалах используются различные методы неразрушающего контроля (дефектоскопии).
Известно, что дефекты в металле являются причиной изменения его физических характеристик: плотности, электропроводности, магнитной проницаемости, упругих и других свойств. Исследование этих характеристик и обнаружение с их помощью дефектов составляет физическую сущность методов неразрушающего контроля. Эти методы основаны на использовании проникающих излучений рентгеновских и гамма-лучей, магнитных и электромагнитных полей, колебаний, оптических спектров, явлений капиллярности и других.
Согласно ГОСТ 18353 методы неразрушающего контроля классифицируют по видам: акустические, магнитные, оптические, проникающими веществами, радиационные, радиоволновые, тепловые, электрические, электромагнитные. Каждый вид представляет собой условную группу методов, объединенных общностью физических характеристик.
Выбор вида дефектоскопии зависит от материала, конструкции и размеров деталей, характера выявляемых дефектов и условий дефектоскопии (в мастерских или на машине). Основными качественными показателями методов дефектоскопии являются чувствительность, разрешающая способность, достоверность результатов. Чувствительность - наименьшие размеры выявляемых дефектов; разрешающая способность - наименьшее расстояние между двумя соседними минимальными выявляемыми дефектами, измеряется в единицах длины или числом линий на 1 мм (мм-1). Достоверность результатов - вероятность пропуска дефектов или браковки годных деталей.
Акустические методы основаны на регистрации параметров упругих колебаний, возбужденных в исследуемом объекте. Эти методы широко применяются для контроля толщины деталей, сплошности (трещин, пористости, раковин и т.п.) и физико-механических свойств (зернистости, межкристаллитной коррозии, глубины закаленного слоя и др.) материала. Контроль выполняется на основании анализа характера распространения звуковых волн в материале детали (амплитуды, фазы, скорости, угла преломления, резонансных явлений). Метод пригоден для деталей, материал которых способен упруго сопротивляться деформациям сдвига (металлы, фарфор, оргстекло, некоторые пластмассы).
В зависимости от частоты акустические волны подразделяют на инфракрасные - с частотой до 20 Гц, звуковые (от 20 до 2x104 Гц), ультразвуковые (от 2·104 до 109 Гц) и гиперзвуковые (свыше 109 Гц). Ультразвуковые дефектоскопы работают с частотой ультразвуковых колебаний (УЗК) от 0,5 до 10 МГц.
Упругие волны характеризуются следующими параметрами: длиной, частотой, скоростью распространения, амплитудой волны, акустическим давлением, смещением, скоростью и ускорением частиц среды, энергией волны.
Для обнаружения различных дефектов применяют различные схемы прозвучивания. В зависимости от назначения, метода диагностирования, объекта и дефектов применяют различные пьезоэлектрические преобразователи (датчики излучения и приема ультразвуковых волн). Пьезоэлектрические датчики различаются формой, направленностью ультразвуковой волны.
Для наглядности и большей информативности результатов звукового анализа дефектов в материале применяют методы ультразвуковой интроскопии, основанные на преобразовании поля акустических сигналов в оптическое изображение на экране дисплея (интегральные методы получения изображений, сканирование фокусирующими преобразователями, стробоскопические эффекты, методы вычислительной томографии, топографические методы и др.).
Акустические методы подразделяют на активные, основанные на излучении и приеме волн (теневой, резонансный, эхо - импульсный, велосимметрический методы), и пассивные, основанные на приеме колебаний волн исследуемого объекта (акустической эмиссии, виброшумодиагностические методы).
На ремонтных предприятиях нефтегазовой отрасли широко применяют ультразвуковую дефектоскопию. Сущность ее заключается в способности ультразвуковых колебаний приникать вглубь материала контролируемого изделия и отражаться от дефектов, являющихся нарушением сплошности материала.
Ультразвуковыми колебаниями принято называть упругие механические колебания с частотой более 20 кГц. Для излучения и приема ультразвуковых колебаний обычно используют пьезоэлектрические преобразователи-пластинки, изготовленные из монокристаллов кварца, сульфата лития и других материалов.
При внесении пьезоэлемента в электрическое поле в нем возникают упругие деформации, величина и направление которых зависят от параметров электрического поля. Указанный процесс является строго обратимым, т.е. если на пьезоэлемент действует переменное напряжение, изменяющееся по определенному закону, то и возникающее электрическое напряжение подчиняется этому же закону. Подобное явление называется пьезоэлектрическим эффектом.
Ультразвуковые колебания распространяются в виде узких направленных пучков. Они могут отражаться, преломляться и фокусироваться. При падении на границу раздела двух фаз, обладающих различным акустическим сопротивлением, в том числе нарушенной сплошности материала (трещин, раковин, расслоений и др.), часть ультразвуковых колебаний отражается, причем угол падения равен углу отражения, а остальная часть УЗК проходит во вторую среду, преломляясь в ней. Направленность УЗК и способность их отражаться от границы раздела двух сред используются для выявления в материалах трещин, расслоений, пор, газовых и шлаковых включений и измерения толщины деталей.
Ультразвуковая дефектоскопия осуществляется тремя основными методами: теневым, резонансным и эхо - методом.
Теневой метод основан на появлении за дефектом «звуковой тени» при прохождении ультразвука через деталь, помещенную между излучателем колебаний и приемным устройством. На рис. 7.8 изображена схема дефектоскопа, работающего по принципу теневого метода. Высокочастотные электрические колебания, вырабатываемые генератором 1, подаются на пьезоэлектрический преобразователь 2, в котором преобразуются в механические колебания ультразвуковой частоты. При плотном соприкосновении преобразователя 2 с поверхностью контролируемой детали 3 колебания (волны) 4 распространяются вглубь материала детали, достигают при отсутствии дефекта приемного пьезоэлектрического преобразователя 5 и регистрируются прибором 7.
Рис. 7.8. Схема ультразвукового дефектоскопа, работающего по теневому методу:
а - без дефекта; б - с дефектом; 1 - генератор; 2 - преобразователь пьезоэлектрический; 3 - контролируемая деталь; 4 - ультразвуковые колебания; 5 - преобразователь приемный пьезоэлектрический; 6 - дефект, 7 - прибор регистрирующий
Если на пути ультразвуковых колебаний встречается дефект 6, то они отражаются от него и не попадают на приемный преобразователь 5, т.е. за дефектом образуется «звуковая тень». При этом на регистрирующем приборе 7 отсутствуют показания, что свидетельствует о наличии дефекта.
Применяются также временной теневой и зеркально-теневой методы.
Временной теневой метод основан на запаздывании импульса, вызванного огибанием дефекта.
Зеркально-теневой метод основан на ослаблении сигнала, отраженного от противоположной поверхности изделия (донный эффект).
Резонансный метод основан на возникновении стоячих волн в материале контролируемой детали при совпадении частоты колебаний источника.