- •1. Общие положения по эксплуатации оборудования
- •1.1. Основные понятия и определения
- •1.2. Служба эксплуатации оборудования и эксплуатационно-ремонтная база
- •1.3. Эксплуатационная документация
- •2. Подготовка оборудования к эксплуатации
- •2.1. Формирование парка оборудования
- •2.2. Приемка оборудования
- •2.3. Транспортирование оборудования
- •2.4. Монтаж и демонтаж оборудования основные этапы монтажных работ
- •Фундаменты под основание
- •Методы и способы монтажа
- •2.5. Пуск оборудования в эксплуатацию. Эксплуатационная обкатка машин
- •3. Режимы работы и эффективность использования оборудования
- •3.1. Сменный, суточный и годовой режимы
- •Работы оборудования
- •3.2. Производительность и норма выработки машин
- •3.3. Стоимость эксплуатации оборудования
- •3.4. Анализ эффективности работы оборудования
- •4. Надежность оборудования и ее изменение при эксплуатации
- •4.1. Показатели надежности оборудования
- •4.2. Общие принципы сбора и обработки
- •Статистической информации о надежности
- •Оборудования при эксплуатации
- •Сбор информации об отказах оборудования
- •Обработка эксплуатационной информации по отказам
- •Оценка надежности оборудования
- •4.3. Поддержание надежности оборудования при эксплуатации
- •На этапе эксплуатации оборудования
- •5. Причины отказов оборудования при эксплуатации
- •5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
- •5.2. Деформация и изломы элементов оборудования
- •5.3. Износ элементов оборудования
- •5.4. Коррозионные разрушения элементов оборудования
- •5.5. Сорбционные разрушения элементов оборудования
- •5.6. Коррозионно-механические разрушения элементов оборудования
- •5.7. Сорбционно-механические разрушения элементов оборудования
- •5.8. Образование на поверхностях оборудования отложений твердых веществ
- •6. Организация технического обслуживания, ремонта, хранения и списания оборудования
- •6.1. Система технического обслуживания и ремонта оборудования
- •Виды технического обслуживания и ремонта оборудования
- •Стратегии то и р оборудования
- •Организация и планирование то и р оборудования по наработке
- •Организация и планирование то и р оборудования по фактическому техническому состоянию
- •6.2 Смазочные материалы и спецжидкости назначение и классификация смазочных материалов
- •Жидкие смазочные материалы
- •Пластичные смазочные материалы
- •Твердые смазочные материалы
- •Выбор смазочных материалов
- •Способы смазки машин и смазочные устройства
- •Жидкости для гидравлических систем
- •Тормозные и амортизаторные жидкости
- •Использование и хранение смазочных материалов
- •Сбор отработанных масел и их регенерация
- •6.3. Хранение и консервация оборудования
- •6.4. Гарантийные сроки и списание оборудования
- •Списание оборудования
- •7. Диагностика технического состояния оборудования
- •7.1. Основные принципы технического диагностирования
- •7.2. Методы и средства технической диагностики
- •Средства диагностики технического состояния оборудования
- •Методы и средства диагностического контроля насосных агрегатов
- •Методы и средства диагностического контроля трубопроводной запорной арматуры
- •7.3. Методы и технические средства дефектоскопии материала деталей машин и элементов металлоконструкций
- •7.4. Методы прогнозирования остаточного ресурса оборудования
- •8. Технологические основы ремонта оборудования
- •8.1. Структура производственного процесса ремонта оборудования
- •Индивидуальным методом
- •8.2. Подготовительные работы для сдачи оборудования в ремонт
- •8.3. Моечно-очистные работы
- •Состав смывок для очистки поверхности от лакокрасочных покрытий
- •8.4. Разборка оборудования
- •8.5. Контрольно-сортировочные работы
- •8.6. Комплектование деталей оборудования
- •8.7. Балансировка деталей
- •8.8. Сборка оборудования
- •8.9. Приработка и испытание агрегатов и машин
- •8.10. Окраска оборудования
- •9 Способы восстановления сопряжений и поверхностей деталей оборудования
- •9.1. Классификация способов восстановления сопряжений
- •9.2. Классификация способов восстановления поверхностей деталей
- •9.3. Выбор рационального способа восстановления поверхностей деталей
- •10 Технологические методы, применяемые для восстановления поверхностей и неразъемных соединений ремонтируемых деталей
- •10.1. Восстановление поверхностей наплавкой
- •Ручная газовая наплавка
- •Ручная электродуговая наплавка
- •Автоматическая электродуговая наплавка под слоем флюса
- •Автоматическая электродуговая наплавка в среде защитных газов
- •Автоматическая вибродуговая наплавка
- •10.2. Восстановление поверхностей металлизацией
- •10.3. Восстановление поверхностей гальваническим наращиванием
- •Электролитическое хромирование
- •Электролитическое осталивание
- •Электролитическое меднение
- •Электролитическое никелирование
- •10.4. Восстановление поверхностей деталей пластическим деформированием
- •10.5. Восстановление поверхностей полимерным покрытием
- •Полимерных покрытий:
- •10.6. Восстановление поверхностей механической обработкой
- •10.7. Соединение деталей и их отдельных частей методами сварки, пайки и склеивания соединение деталей сваркой
- •Соединение деталей пайкой
- •Склеивание деталей
- •11 Типовые технологические процессы ремонта деталей
- •11.1. Ремонт деталей типа валов
- •11.2. Ремонт деталей типа втулок
- •11.3. Ремонт деталей типа дисков
- •Ремонт зубчатых колес
- •Ремонт цепных колес
- •11.4. Ремонт корпусных деталей
- •Ремонтных деталей:
- •Ремонт корпуса вертлюга
- •Ремонтных деталей:
- •Ремонт корпуса крейцкопфа бурового насоса
- •Ремонт клапанных коробок буровых насосов
- •Дополнительных ремонтных деталей:
- •Ремонт корпусов задвижек фонтанной и трубопроводной запорной арматуры
- •Ремонт корпуса турбобура
- •Способом замены части детали:
На этапе эксплуатации оборудования
2) обучение специалистов цехов, отделов и лабораторий по сбору, обработке и анализу данных по надежности в единой информационной среде нефтегазодобывающего общества и помощь им;
3) постоянное совершенствование системы сбора и обработки данных по надежности оборудования на основе современных программных комплексов и развитых средств ЭВТ.
Основные элементы программы управления надежностью на этапе эксплуатации приведены на рис. 4.6.
5. Причины отказов оборудования при эксплуатации
5.1. Специфика условий эксплуатации оборудования для бурения скважин, добычи и подготовки нефти и газа
Несмотря на многообразие функционально и конструктивно отличающихся видов оборудования для бурения скважин и нефтегазодобычи по условиям эксплуатации следует различать две основные группы оборудования: наземное и скважинное. Большинство видов наземного оборудования эксплуатируется на открытом воздухе, поэтому они подвергаются внешним климатическим воздействиям. Климатические условия весьма разнообразны. В северных районах температура воздуха в зимний период снижается до минус 50 °С, а иногда и до минус 60 °С. В южных районах температура воздуха в летний период достигает плюс 50 °С. Климатические условия влияют на тепловой режим работы оборудования, коррозионную активность окружающей среды, трудоемкость и качество технического обслуживания и ремонта.
При эксплуатации в условиях низких температур возникает опасность разрушения металлоконструкций, вызванная повышением хрупкости материалов, выхода из строя устройств для осушения сжатого воздуха и удаления жидкого конденсата, систем управления. В результате преждевременного разрушения или изменения свойств материалов уплотнений и шлангов нарушается работа систем смазки, что вызывает возрастание сил трения и интенсивный износ деталей и механизмов.
При эксплуатации в условиях высоких температур окружающего воздуха возможно преждевременное разрушение деталей, изготавливаемых из резины и полимерных материалов.
При значительной запыленности воздуха возрастает износ трущихся поверхностей. Степень абразивного воздействия пыли изменяется в широких пределах и зависит от ее дисперсности, формы, размера и твердости частиц.
Износ различных сопряжений оборудования существенно возрастает при проникновении пыли через уплотнительные устройства к поверхностям трения. Поэтому в условиях большой запыленности качество уплотнений и уход за ними оказывают решающее влияние на ресурс сопряжений оборудования.
Подземное оборудование и внутренние рабочие полости наземного оборудования испытывают воздействие различных жидких и газообразных технологических и эксплуатационных сред. По механизму контактного взаимодействия с конструкционными материалами, используемыми для изготовления различных элементов оборудования для бурения скважин и нефтегазодобычи, разнообразные технологические и эксплуатационные среды могут быть разделены на ряд групп: абразивные, сорбционно-активные, химически активные, электрохимически активные и инертные. Такое деление является условным. Одна и та же среда может быть абразивной, сорбционно-активной, электрохимически активной или химически активной по отношению к одному материалу и инертной по отношению к другому, что в значительной степени определяется свойствами самого материала и условиями его контактного взаимодействия со средой.
Механизм контактного взаимодействия абразивной среды с поверхностями элементов оборудования заключается в режущем или царапающем действии этой среды по отношению к поверхностям оборудования.
Механизм контактного взаимодействия сорбционно-активных сред с конструкционными материалами основан на явлениях адсорбции среды на поверхности материала и ее абсорбции объемом материала, приводящих к изменению прочности и деформационных свойств этого материала.
Адсорбцией называется поглощение поверхностью твердого тела молекул, атомов и ионов другого вещества, находящихся в окружающей среде.
Силы притяжения поверхностных молекул, атомов и ионов твердых тел, подобно поверхностным молекулам жидкости, не уравновешены притяжением молекул другой фазы, и результирующая сила направлена внутрь твердого тела. Вследствие этого твердые тела, так же как и жидкости, обладают определенным запасом свободной поверхностной энергии и стремятся уменьшить величину этой энергии до минимального при данных условиях значения. Этим объясняется способность твердых тел адсорбировать газы и жидкости; при этом твердое тело является сорбентом, а вещество поглощаемое - сорбтивом. Сорбционные процессы в зависимости от того, насколько глубоко проникают частицы сорбтива в сорбент, носят различное название. Хотя всякий сорбционный процесс начинается на поверхности раздела фаз, однако закончиться он может двояким образом. Пока газ или жидкость остаются на поверхности пронизывающих твердое тело микроканалов, полостей или трещин, не внедряясь между молекулами, атомами или ионами твердой фазы, мы говорим, что среда является адсорбированной.
Адсорбция происходит за счет сил межмолекулярного притяжения (ван-дер-ваальсовых), сопровождается небольшим положительным тепловым эффектом и является обратимым процессом. Ее обычно называют физической адсорбцией. В ряде случаев при адсорбции образуются поверхностные химические соединения, при этом затрачивается энергия активации; адсорбция такого вида называется активированной. Адсорбция этого вида может быть необратимой. Скорость физической адсорбции при всех температурах достаточно велика и на гладкой поверхности протекает почти мгновенно, в то время как скорость активированной адсорбции резко увеличивается с повышением температуры. Поэтому при низких температурах происходит, в основном, физическая адсорбция, а при высоких - активированная.
Поверхностная энергия твердого тела во многом определяет такие важные свойства поверхности как смачивание и адгезия. При соответствии знака полярности любые жидкости тем лучше смачивают твердое тело, чем выше его поверхностная энергия. Наиболее высокой поверхностной энергией (более 500 МДж/м2) обладают металлы, их окислы, сульфиды, нитриды, стекло. Низкой поверхностной энергией обладают полимеры (18 - 60 МДж/м2).
Твердые поверхности, смачиваемые водой, называются гидрофильными, а на которых вода не растекается - гидрофобными. Гидрофобные неполярные поверхности преимущественно смачиваются жидкими углеводородами, тогда как гидрофильные - водой. Изменяя природу материала поверхности твердого тела, можно придавать ей гидрофильные или гидрофобные свойства. В ряде случаев процесс поглощения вещества твердым телом, начавшись на поверхности, распространяется в объеме этого тела. Подобный процесс объемного поглощения твердым телом жидкости или газа получил название - абсорбция. В результате абсорбции уменьшается межмолекулярное взаимодействие в твердом теле, обусловленное более активным молекулярным взаимодействием сорбента и сорбтива. Примером абсорбции может служить поглощение металлом водорода, полимером водной среды и т.п. Следствием абсорбции полимером жидких сред является его набухание или растворение, что приводит к изменению прочности и деформационных свойств.
К электрохимически активным средам относятся среды, обладающие свойствами электролита. Электрохимическая активность этих сред проявляется преимущественно при контакте с металлами и сплавами и обусловливает протекание электрохимической коррозии, представляющей самопроизвольный процесс разрушения металлов в электролитически проводящей среде. Разрушение металла в этом случае является результатом работы коррозионных элементов на отдельных участках поверхности металла, образующихся вследствие электрохимической гетерогенности этой поверхности. Основными причинами электрохимической гетерогенности поверхности, обусловливающими образование на ней анодных и катодных участков, являются наличие различных примесей в металле, анизотропность кристаллической решетки, присутствие окислов и загрязнений на поверхности металла, неравномерное напряженное состояние в микрообъемах металла и др.
В большинстве случаев продукция добывающих скважин представляет собой многокомпонентную электролитически проводящую среду, состоящую из нефти, пластовой воды, свободного или растворенного углеводородного газа и ряда других растворенных примесей, определяющих ее электрохимическую активность по отношению к металлу (сероводород, углекислый газ, кислород, минеральные соли и др.). При контакте металла оборудования с подобной средой развивается его интенсивная электрохимическая коррозия.
Агрессивность самих нефтей, например девонской или угленосной свиты, ничтожно мала в том случае, если в них не содержится вода. Содержащаяся в продукции скважин вода образует с нефтью стойкие эмульсии.
Из многих факторов, оказывающих влияние на коррозионную активность подобной системы, важнейшее значение имеет соотношение воды и нефти.
В настоящее время для интенсификации добычи нефти применяют, в основном, искусственное поддержание пластового давления путем закачки в пласт пресных и сточных вод. В результате значительно возрастает обводненность нефти и, следовательно, увеличивается коррозионная активность продукции скважин. Известно, что пластовая вода, добываемая совместно с нефтью, представляет собой высокоминерализованную среду, содержащую ионы хлора, карбонатов и бикарбонатов, сульфатов калия, магния, натрия, железа. В ней могут быть растворены газообразные примеси - сероводород, диоксид углерода, углеводородные газы и др.
Разнообразные причины отказов различных элементов оборудования для бурения скважин и нефтегазодобычи, обусловленные рассмотренной спецификой условий его эксплуатации, можно разделить на семь основных групп:
деформация и излом;
износ;
коррозионные разрушения;
сорбционные разрушения;
коррозионно-механические разрушения;
сорбционно-механические разрушения;
образование отложений твердых веществ.