Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Черный М.А., Кораблин В.И., 1973 - Самолетовождение.doc
Скачиваний:
182
Добавлен:
10.07.2022
Размер:
10.21 Mб
Скачать

6. Конические проекции

Конические проекции получаются в результате переноса поверх­ности Земли на боковую поверхность конуса, касательного к одной из параллелей или секущего земной шар по двум заданным па­раллелям. Затем конус разрезается по образующей и разворачи­вается на плоскость. Конические проекции в зависимости от распо­ложения оси конуса относительно оси вращения Земли могут быть нормальные, поперечные и косые. Большинство авиа­ционных карт построено в нормальной конической проек­ции.

Равноугольные конические проекции. Равноугольные конические проекции могут строиться на касательном или на секущем конусе. Принцип построения такой проекции на касательном конусе (рис. 2.5) состоит в том, что все меридианы выпрямляют до сопри­косновения с боковой поверхностью конуса. При этом все паралле­ли, кроме параллели касания, будут растягиваться до размеров окружности конуса. Для того чтобы сделать проекцию равноуголь­ной и сохранить подобие фигур, производят растягивание меридиа­нов в такой степени, в какой были растянуты параллели в данной точке карты. Затем конус разрезается по образующей и разворачи­вается на плоскость.

Карты в равноугольной конической проекции на касательном конусе имеют следующие свойства:

I

1) меридианы изображаются в виде прямых, сходящихся к по­люсу;

2) угол схождения меридианов

σ= Δλ sinφ,

где Δλ — разность долгот между заданными меридианами; φ — широта параллели касания;

3) параллели имеют вид дуг концентрических окружностей, расстояния между которыми увеличиваются по мере удаления от параллели касания;

4) на параллели касания искажения длин отсутствуют, а в по­лосе ±5° от этой параллели они незначительные и в практике не учитываются;

5) локсодромия изображается кривой линией, обращенной сво­ей выпуклостью к экватору;

6) ортодромия для расстояний до 1200 км изображается пря­мой линией, а для больших расстояний имеет вид кривой, обращен­ной своей выпуклостью в сторону более крупного масштаба.

В равноугольной конической проекции на касательном конусе издаются бортовые карты масштабов 1:2000000, 1:2500000, 1 :3 000 000, 1 : 4 000 000 и обзорная карта масштаба 1 :5 000 000.

С целью уменьшения искажений поверхность Земли переносят на секущий конус (рис. 2.6). Равноугольная коническая проекция на секущем конусе имеет следующие свойства:

1) угол схождения меридианов определяется по формуле

σ= Δλ sinφср,

где Δλ — разность долгот между заданными меридианами; φср — средняя широта между параллелями сечения;

2) на параллелях сечения искажения длин отсутствуют, а в по­лосе ±5° от этих параллелей искажения незначительные;

3) масштаб в разных точках карты неодинаковый. На внешних сторонах от параллелей сечения он крупнее, а между параллеля­ми сечения мельче. Такое изменение масштабов обусловлено тем, что при переносе поверхности Земли на секущий конус изображе­ния на внешних сторонах от параллелей сечения, приходится растягивать, а между паралле­лями сечения

сжимать;

4 ) ортодромия изобра­жается кривой, выпуклой в сторону более крупного масштаба и имеет точку перегиба на параллели наи­меньшего масштаба.

В нормальной равно­угольной конической про-­ екции на секущем конусе издаются бортовые карты масштабов 1 :2 000 000 (Москва — Берлин) и 1 : 2 500 000.