Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Черный М.А., Кораблин В.И., 1973 - Самолетовождение.doc
Скачиваний:
182
Добавлен:
10.07.2022
Размер:
10.21 Mб
Скачать

7. Магнитные поля, действующие на картушку компаса, установленного на самолете

На картушку магнитного компаса, установленного на самолете, действуют следующие поля:

1) магнитное поле Земли (оно стремится направить стрелку магнитного компаса по магнитному меридиану);

2) постоянное магнитное поле самолета;

3) переменное магнитное поле самолета;

4) электромагнитное поле, создаваемое работающим электро- и радиооборудованием самолета.

Постоянное магнитное поле самолета создается твердым само­летным железом. Твердое железо — это такие ферромагнит­ные массы самолета, которые длительно сохраняют магнитные свойства, т. е. обладают большой коэрцитивной силой. Твердое железо рассматривают в магнитном отношении как постоянный магнит. Постоянное магнитное поле самолета сохраняет величину и направление относительно продольной оси самолета на любом курсе и вызывает полукруговую девиацию.

Переменное магнитное поле самолета создается мягким само­летным железом. Мягкое железо — это такие ферромагнит­ные массы самолета, которые имеют неустойчивую намагничен­ность, т. е. обладают малой коэрцитивной силой. Они легко перемагничиваются при перемене курса самолета. Переменное магнитное поле самолета меняет свою величину и направление от­носительно продольной оси в зависимости от курса самолета и вы­зывает четвертную девиацию.

Электромагнитное поле, создаваемое работающим элек­тро- и радиооборудованием самолета, по характеру действия ана­логично магнитному полю твердого железа. Поэтому девиация, вы­зываемая электромагнитным полем, обычно рассматривается сов­местно с девиацией, вызываемой твердым железом.

Рассмотрим полукруговую и четвертную девиацию и их харак­теристики.

Полукруговая девиация и ее характеристика. Девиация назы­вается полукруговой потому, что она 2 раза (через полукруг) приходит к нулю и 2 раза меняет свой знак при повороте самолета на 360°.

Для удобства рассмотрения суммарное действие постоянного магнитного поля самолета можно заменить эквивалентным дейст­вием бруска твердого железа. Предположим, что брусок твердого железа расположен по продольной оси самолета. Обозначим бук­вой Н горизонтальную составляющую магнитного поля Земли, а буквой F вектор напряженности магнитного поля бруска твердого железа. Так как вектор F направлен по продольной оси самолета, то на МК=0° его действие будет совпадать с действием вектора R (рис. 3. 9) и F не вызывает отклонения картушки компаса от пло­скости магнитного меридиана. Поэтому на МК=0° девиация рав­на нулю.Из рисунка видно, что при изменении курса самолета направле­ние результирующего вектора R изменяется. На МК=90° вектор F

Рис. 3.9. Полукруговая девиация:

а —действие магнитного поля твердого железа; б —график полукруговой де­виации

направлен под прямым углом к вектору H и создает максималь­ную положительную девиацию. При дальнейшем повороте само­лета девиация начнет уменьшаться и на курсе 180° снова станет равной нулю. Затем после курса 180° вектор F начнет вызывать отрицательную девиацию, которая достигнет максимальной вели­чины на МК=270°.

Полукруговая девиация имеет следующие особенности:

а) при повороте самолета на 360° она дважды достигает мак­симального значения и 2 раза становится равной нулю;

б) на противоположных курсах полукруговая девиация равна по величине, но противоположна по знаку;

в) полукруговая девиация составляет большую часть девиации компаса и ее можно полностью компенсировать с помощью посто­янных магнитов девиационного прибора.

В общем случае брусок твердого железа может и не совпадать по направлению с продольной осью самолета, что не меняет харак­тера полукруговой девиации, но смещает ее график по отношению курсов самолета на угол, равный углу между продольной осью са­молета и направлением оси бруска. Полукруговая девиация при любом положении бруска твердого железа будет дважды равнять­ся нулю при повороте самолета на 360°.

Четвертная девиация и ее характеристика. Девиация называется четвертной потому, что она при повороте самолета на 360° 4 раза (через четверть круга) становится равной нулю и 4 раза ме­няет свой знак.

Мягкое железо приобретает свойства магнита при воздействии на него магнитного поля Земли и, как уже отмечалось, имеет не­устойчивую намагниченность. Брусок мягкого железа, расположенный определенным

Рис. 3.10. Четвертная девиация: а — действие магнитного поля мягкого железа; б — график четвертной девиации

образом по отношению к магнитному полю Земли, намагничивается не по направлению магнитных силовых линий, а по длине бруска. Намагниченность бруска

B= μHсоsα,

где В — магнитная индукция; μ — магнитная проницаемость бруска; α — угол между направлением вектора напряженности поля и направлением бруска.

Следовательно, максимальное намагничивание бруска мягкого железа происходит в том случае, когда брусок расположен по на­правлению силовых линий поля. Когда брусок расположен перпен­дикулярно к магнитным силовым линиям, то намагниченность его равна нулю. Поэтому при перемене курса самолета мягкое железо перемагничивается и создает переменное поле самолета, которое меняет свою величину и направление относительно продольной оси самолета.

Для удобства объяснения влияния мягкого железа на магнит­ный компас расположим вблизи компаса брусок мягкого железа вдоль продольной оси самолета. Обозначим вектор напряженно­сти поля бруска мягкого железа буквой F (рис. 3.10).

На МК = 0° векторы F и H совпадут по направлению. Хотя намагниченность бруска мягкого железа в этом случае будет мак­симальной, она не вызовет отклонения картушки компаса от пло­скости магнитного меридиана и девиация останется равной нулю.

При повороте самолета брусок мягкого железа отклоняется от на­правления силовых линий магнитно­го поля Земли и намагниченность бруска уменьшается. На МК=45° дей­ствие магнитного поля мягкого желе­за вызовет максимальное значение положительной девиации. На МК=90° мягкое железо потеряет свойства маг­нита, так как брусок расположится перпендикулярно к силовым линиям магнитного поля Земли и девиация снова станет равной нулю. При даль­нейшем повороте самолета брусок мяг­кого железа перемагнитится и вызовет отрицательную девиацию, которая на МК=135° достигнет максимального значения. Из рисунка видно, что на МК, равных 180 и 270°, девиация вновь достигнет нуля, а на МК, равных 225 и 315°, будет макси­мальной.

Четвертная девиация имеет следующие свойства:

а) при повороте самолета на 360° она 4 раза достигает макси­мума и 4 раза становится равной нулю;

б) на противоположных курсах четвертная девиация равна по величине и по знаку;

в) четвертная девиация составляет меньшую часть девиации компаса.

Характер изменения этой девиации не позволяет устранять ее с помощью постоянных магнитов. Она списывается и заносится в график. В современных компасах (ГИК-1) четвертная девиация компенсируется с помощью механического компенсатора.

К ак правило, переменное магнитное поле самолета нельзя, за исключением редких случаев, привести к действию одного бруска мягкого железа. Расположение деталей из мягкого железа на са­молете обычно таково, что своим действием они вызывают, кроме четвертной, постоянную девиацию.

Постоянная девиация вызывается мягким самолетным железом, расположенным вокруг компаса и намагниченным магнитным по­лем Земли (рис. 3.11). Железные детали, расположенные вокруг компаса, могут создать такое суммарное магнитное поле, которое не будет изменять своей величины и положения в пространстве при изменении курса самолета, т. е. массы мягкого железа могут образовать магнитное поле с устойчивой полярностью.

Обозначим вектор напряженности магнитного поля, вызванного мягким железом, расположенным по окружности, буквой F. Если разложить этот вектор на составляющую ΔH, направленную по магнитному меридиану, и составляющую ΔF, направленную перпендикулярно к

меридиану, то можно заметить, что составляющая ΔF вызовет постоянную по величине и знаку девиацию на всех курсах. Постоянная девиация компенсируется одновременно с устранением установочной ошибки путем поворота компаса (датчика).

8. Магнитные силы, действующие на стрелку компаса. Формула девиации

На стрелку компаса, установленного на самолете, в горизон­тальной плоскости одновременно оказывают действие шесть маг­нитных сил.

1. Сила λH, действующая в направлении магнитного мери­диана. Источником этой силы является в основном горизонтальная составляющая магнитного поля Земли и в меньшей мере мягкое железо, намагниченное земным магнетизмом. Направление этой силы не зависит от курса самолета. Ее величина изменяется с изме­нением магнитной широты места. Эта сила стремится установить стрелку компаса вдоль магнитного меридиана и девиации не вы­зывает (рис. 3.12).

2 . Сила АλН, действующая перпендикулярно магнитному ме­ридиану (к востоку или западу). Создается мягким железом, рас­положенным по окружности вокруг

компаса и намагниченным магнитным полем Земли. Направление силы не зависит от курса самолета. Ее величи­на изменяется с переменой магнитной широты места, вызывает постоянную девиацию. _

3. Сила ВλН, действующая в направлении продольной оси самоле­та. Создается твердым железом, рас­положенным вдоль продольной оси са­молета, вызывает полукруговую девиа­цию. На курсах 0 и 180° девиация равна нулю, а на курсах 90 и 270° — максимальной величине. Девиация от этой силы изменяется по закону синуса, т. е.

Δ1к = В sinMK.

4. Сила СλН, действующая пер­пендикулярно продольной оси самоле­та (в правый или левый борт). Созда­ется твердым железом, расположен­ным вдоль поперечной оси самолета, и вызывает полукруговую девиацию. На курсах 90 и 270° девиация равна нулю, а

на курсах 0 и 180° — максимальному значению. Девиация от этой силы изменяется по зако­ну косинуса, т. е.

ΔIIк =CcosMK.,

5. Сила DλH, действующая по отношению меридиана в на­правлении двойного магнитного курса. Создается мягким железом, намагниченным магнитным полем Земли, и вызывает четвертную девиацию. На курсах 0, 90, 180 и 270° эта сила направлена вдоль магнитного меридиана и девиации не вызывает. На курсах 45, 135, 225, 315° девиация достигает максимального значения. Девиация от этой силы изменяется по закону синуса двойного курса, т. е.

ΔIIIк =Dsin2MK.

6. Сила ЕλН, действующая перпендикулярно к направлению силы DλH. Создается мягким железом, намагниченным магнитным полем твердого самолетного железа, и вызывает четвертную де­виацию. На курсах 0, 90, 180, 270° эта сила направлена перпенди­кулярно к магнитному меридиану и вызывает максимальное значе­ние девиации. На курсах 45, 135, 225, 315° девиация равна нулю. Девиация от этой силы изменяется по закону косинуса двойного курса, т. е.

ΔIVк =Ecos2MK.

Чтобы получить суммарную девиацию компаса, необходимо сложить девиации, производимые каждой силой. Девиация ком­паса на любом курсе

Δк = А+ В sin МК + С cos МК + D sin 2MK + Ecos 2MK.

Для определения девиации по этой формуле предварительно вы­числяют коэффициенты А, В, С, D и Е по специальным формулам.