
- •Глава 1. Интерполирование
- •Постановка задачи интерполирования
- •1.2. Единственность интерполяционного многочлена
- •. Интерполяционный многочлен Лагранжа
- •1.4. Погрешность интерполяционной формулы Лагранжа
- •. Конечные разности и их свойства
- •1.6. Первая интерполяционная формула Ньютона
- •1.7. Вторая интерполяционная формула Ньютона
- •1.8. Интерполяционная формула Гаусса
- •1.10. Численное дифференцирование
- •Глава 2. Численное интегрирование
- •2.1. Общие замечания
- •Глава 3. Численные методы решения алгебраических и трансцендентных уравнений
- •3.1. Вводные замечания
- •3.2. Отделение корней
- •3.3. Метод половинного деления
- •3.5. Метод Ньютона (метод касательных)
- •3.6. Комбинированный метод
- •3.7. Метод итерации (метод последовательных приближений)
- •Глава 4. Решение систем линейных уравнений
- •4.1. Метод Гаусса (схема единственного деления)
- •4.2. Вычисление определителей
- •4.3. Вычисление обратной матрицы
- •4.4. Некоторые сведения из линейной алгебры
- •Рассмотрим систему линейных алгебраических уравнений
- •Вычитая второе равенство из первого, получаем
- •4.6. Приведение линейной системы к виду,
- •4.7. Метод Зейделя Пусть система линейных алгебраических уравнений приведена к виду
- •Глава 5. Обработка результатов наблюдений
- •5.1. Постановка задачи
- •5.2. Приближение функции, заданной таблично,
- •Глава 6. Численные методы решения
- •6.1. Методы решения задачи Коши. Вводные замечания
- •6.2. Решение дифференциальных уравнений
- •6.3. Метод Эйлера Пусть дано дифференциальное уравнение
- •6.4. Уточненный метод Эйлера Рассмотрим дифференциальное уравнение
- •6.6. Методы Рунге – Кутта Пусть дано дифференциальное уравнение
- •6.7. Метод Милна
- •6.8. Приближенное решение систем дифференциальных
- •6.9.Краевые задачи для обыкновенных дифференциальных
- •6.10. Решение краевых задач
- •6.11. Метод прогонки Рассмотрим линейную систему уравнений (6.54). Преобразуя первые (n-1) уравнения:
- •Глава 7. Численное решение дифференциальных уравнений в частных производных
- •7.1. Классификация дифференциальных уравнений
- •7.2. Метод сеток решения краевых задач
- •7.3. Погрешность аппроксимации дифференциальных уравнений
- •7.4. Аппроксимация граничных условий
- •7.6. Метод сеток для уравнений
Глава 3. Численные методы решения алгебраических и трансцендентных уравнений
3.1. Вводные замечания
Пусть задано уравнение f(x)=0, где функция f(x) определена и непрерывна на некотором конечном или бесконечном интервале. Требуется вычислить с заданной точностью действительные корни уравнения. Приближенное вычисление действительных корней уравнений производится в два этапа.
Отделение корней, т.е. нахождение достаточно малых интервалов, каждый из которых содержит один и только один корень уравнения.
Вычисление корней с заданной точностью.
3.2. Отделение корней
Для отделения корней можно использовать следующую теорему.
Теорема. Если
непрерывная функция f(x)
принимает значения разных знаков
на концах отрезка [a,b],
т.е. f(a)f(b)<0, то внутри
этого отрезка находится по крайней мере
один корень уравнения f(x)=0.
Если производная
сохраняет знак на отрезке [a,b],
то корень будет единственный.
Процесс отделения
корней происходит так. Определяем знаки
функции f(x) в ряде точек
из области определения функции х1,
х2, х3,…, выбор
которых учитывает особенности функции
f(x). Если окажется, что
,
то в силу сформулированной выше теоремы
на отрезке
имеется по крайней мере один корень
уравнения f(x)=0. Необходимо тем или
иным способом проверить, является ли
этот корень единственным.
Пример 1. Отделить действительные корни уравнения:
;
;
X |
-1 |
0 |
1 |
2 |
3 |
f(x) |
- |
- |
- |
- |
+ |
На концах отрезка
[2, 3] функция f(x) имеет
разные знаки.
при всех х. Следовательно, на отрезке
[2, 3] находится единственный действительный
кореньзаданного уравнения.
Пример 2.
;
;
x |
-3 |
-2 |
-1 |
0 |
1 |
2 |
3 |
f(x) |
- |
- |
+ |
+ |
- |
- |
+ |
Найдены три отрезка, содержащие корни уравнения: [-2; -1], [0; 1], [2; 3]. Так как алгебраическое уравнение третьей степени имеет три корня, каждый из отрезков содержит один корень уравнения.
Для отделения
корней можно использовать графические
методы. Действительные корни уравнения
f(x)=0 представляют собой
абсциссы точек пересечения графика
функции y=f(x) с осью 0х.
Строим график функции y=f(x) и
определяем интервалы, содержащие точки
пересечения графика с осью 0х. Иногда
удобно представить уравнение f(x)=0 в виде
,
построить графики функции
и
и по графику определить интервалы, в
которые попадают точки пересечения
построенных графиков.
3.3. Метод половинного деления
Пусть дано уравнение f(x)=0 и пусть найден отрезок [a0, b0], на котором находится единственный корень уравнения. Обозначим корень уравнения через . Для нахождения корня уравнения делим отрезок [a0, b0] пополам.
Если
,
то
,
и задача решена. Если
,
выбираем ту из половин отрезка [a0,
b0],
на концах которой функция f(x) имеет
противоположные знаки. Новый суженный
отрезок [a1,
b1]
снова делим пополам и повторяем те же
действия и т.д. (рис.3.1.). В результате
получаем на каком-то этапе или точный
корень уравнения, или же последовательность
вложенных друг в друга отрезков
[a0, b0], [a1, b1], [a2, b2], …, [an, bn],
таких, что
;
(3.1)
;
(3.2)
y
0
а1
b1
а0 а2 b2 b0 x
Рис.3.1.
Рассмотрим
последовательность а0, а1,
а2, а3,… . Эта последовательность
имеет предел, так как она монотонно
неубывающая, ограниченная (все
).
Последовательность b0,
b1, b2, b3,…
также имеет предел, так как она
монотонно невозрастающая, ограниченная
(все
).
Перейдем к пределу
при
в равенстве (3.2):
.
Таким образом,
.
Обозначим общий предел этихх последовательностей через с. перейдем к пределу при в неравенстве (3.1):
.
Отсюда
,
т.е. с – корень уравнения f(x)=0.
Таким образом,
.
Если необходимо
вычислить корень уравнения с точностью
до
,
деление отрезка [a,b]
производим до тех пор, пока
.
За приближенное значение корня берем
среднюю точку отрезка
.
При этом
.
метод половинного деления практически неудобен для вычисления корня с большой точностью ручным способом, так как требует большого объема вычислительной работы. Но он легко реализуется на ЭВМ.
Пример. Вычислить
с точностью до
действительный корень уравнения
.
Обозначим
.
Вычисляем f(1)=3
и f(2)=6. Следовательно,
на отрезке [1, 2] находится
корень заданного уравнения, причем
единственный, так как
>0
при всех х.
Обозначим а0=1,
b0=2.
Применим метод половинного деления.
Деление производим до тех пор, пока
(таблю3.1).
Отметим,
что
можно вычислить грубо, так как требуется
только знак этого значения.
Таблица 3.1
|
|
|
|
|
|
0 1 2 3 4 |
1 1 1.25 1.375 1.4375 |
2 1.5 1.5 1.5 1.5 |
1 0.5 0.25 0.125 0.0625 |
1.5 1.25 1.375 1.4375 1.46875 |
0.37 -1.58 -0.65 -0.15 |
Ответ:
.
3.4. Метод хорд
Дано уравнение
f(x)=0. Пусть найден отрезок
такой, что на концах его функция
имеет разные знаки, т.е.
.
Пусть, кроме этого производные
и
на
отрезке
сохраняют знак. Положим для определенности
,
,
,
при
.
За приближенное значение корня принимаем
точку пересечения с осью 0х хорды,
проходящей через точки
,
(рис.3.2).
у
B0
а0 а1 а2 b0
y=f(x)
А0 А1
Рис. 3.2
Составим уравнение хорды:
.
Найдем точку пересечения с осью 0х, положив у=0. Обозначим абсциссу точки пересечения хорды с осью 0х через а1:
.
Принимая а1 за конец нового отрезка [a1,b0] , можно снова провести хорду и получить второе приближение корня а2:
и т. д.
(n=0,1,2,…).
Докажем сходимость этого процесса. Рассмотрим последовательность а0, а1, а2, … .Это – монотонно возрастающая ограниченная последовательность
а0<a1<a2<…<an<…<b0
имеющая
предел. Пусть
. Переходим к пределу при
в равенстве (3.3):
.
Отсюда f(c)=0
, т.е. с – корень уравнения. Так как
на отрезке [a0,b0]
корень единственный , получаем
.
Таким образом ,
последовательность а0 ,а1,
а2,… сходится и в пределе дает
корень уравнения
.
Аналогично показывается сходимость для остальных случаев.