
- •Федеральное агентство по образованию
- •Е.А.Коломийцева концепции современного естествознания Краткий курс лекций
- •Содержание
- •Вступление
- •Лекция 1. Предмет и методы естествознания
- •1. Предмет естествознания. Естественнонаучная и гуманитарная культуры.
- •2. Наука и научный метод.
- •3. Исторические аспекты развития естествознания.
- •4. Основные разделы современного естествознания.
- •5. Структурные уровни организации материи.
- •Лекция 2. Практические методы физических исследований. Физические величины и измерения.
- •Измерения и измерительные приборы.
- •Для измерения времени также нужен эталон. В настоящее время считается, что 1 секунда – это время, за которое происходит 9192631830 периодов колебаний излучения, испускаемого изотопом цезия .
- •Физические размерности. Международная система си.
- •4. Погрешности измерений.
- •Перечислим основные факторы неточности эксперимента. Помимо грубых промахов самого экспериментатора, их можно разделить на две группы:
- •1) Систематические, которые определяются классом точности прибора (1/2 цены деления) и, возможно, какой-то постоянной ошибкой прибора;
- •Эксперимент.
- •Использование результатов эксперимента. Теория. Критерии научности и истинности теории.
- •Классическая механика и границы ее применимости. Материальная точка. Система отсчета.
- •Траектория, путь и перемещение. Радиус-вектор. Кинематические уравнения.
- •Средняя и мгновенная скорости. Ускорение.
- •Движение материальной точки по окружности. Угол поворота, угловая скорость и угловое ускорение.
- •Связь между линейными и угловыми кинематическими характеристиками движения.
- •Лекция 4. Силы в природе. Фундаментальные взаимодействия.
- •Понятие силы.
- •Динамика макромира. Законы классической механики.
- •Силы в природе.
- •Фундаментальные взаимодействия.
- •Лекция 5. Меры движения – импульс и энергия. Законы сохранения и симметрия пространства - времени.
- •Импульс.
- •Работа в механике. Консервативные и неконсервативные силы.
- •Виды энергии.
- •Момент импульса.
- •Законы сохранения и симметрия пространства-времени.
- •Концепции близкодействия и дальнодействия.
- •Лекция 7. Мегамир. Элементы частной теории относительности. Релятивистская концепция.
- •Движение с большими скоростями.
- •Постулаты Эйнштейна и принцип относительности Эйнштейна.
- •Преобразования Лоренца и следствия из них.
- •Правило сложения скоростей.
- •Масса. Взаимосвязь массы и энергии.
- •Представление об общей теории относительности.
- •Интервал и принцип причинности.
- •Лекция 8. Проблемы пространства и времени.
- •Что мы понимаем под пространством?
- •Основные свойства пространства.
- •Проблемы в представлениях о пространстве.
- •Способы измерения времени.
- •Основные свойства времени.
- •Проблемы в представлениях о времени.
- •Лекция 9. Волновые процессы.
- •Колебания.
- •Скорость и ускорение при колебаниях. Фазовое пространство.
- •Свободные гармонические затухающие колебания и вынужденные колебания.
- •Волновые процессы.
- •Свойства волн.
- •Электромагнитные волны в природе и технике.
- •Автоволны.
- •Лекция 10. Законы микромира. Корпускулярно-волновой дуализм материи. Принцип дополнительности и проблемы причинности.
- •Гипотеза квантов энергии м.Планка.
- •Гипотеза де Бройля. Волновые свойства частиц.
- •Динамика микрочастиц. Принцип неопределенностей Гейзенберга
- •- Принцип неопределенностей Гейзенберга.
- •Представление о квантовой механике.
- •Проблемы причинности.
- •Лекция 11. Элементарные частицы. Кварки.
- •Классификация элементарных частиц.
- •Взаимные превращения элементарных частиц.
- •Гипотеза кварков.
- •Элементарные частицы и фундаментальные взаимодействия.
- •Лекция 12. Радиоактивность
- •Радиоактивные распады.
- •Виды радиоактивных распадов.
- •Законы радиоактивных распадов.
- •Воздействие излучения на человека.
- •Дозиметрия.
- •Лекция 13. Динамические и статистические закономерности.
- •Термодинамический и статистический методы изучения многочастичных систем.
- •Термодинамическое равновесие и квазистатические процессы.
- •Понятие температуры.
- •Теплота, внутренняя энергия и работа.
- •Лекция 14. Энергия в термодинамических процессах.
- •Первое начало термодинамики как закон сохранения энергии.
- •Тепловые машины. Цикл Карно.
- •Деградация энергии. Тепловое загрязнение окружающей среды.
- •Традиционные и нетрадиционные источники энергии.
- •Лекция 15. Порядок и беспорядок в природе. Фазовые переходы. Энтропия. Второе начало термодинамики и «стрела времени».
- •Энтропия.
- •Статистическое толкование энтропии.
- •Второе начало термодинамики.
- •Энтропия и информация.
- •Фазовые переходы. Нарушения симметрии при фазовых переходах и параметр порядка.
- •Лекция 16. Синергетика. Соотношение порядка и хаоса в открытых неравновесных системах.
- •Открытые неравновесные системы.
- •Функция диссипации. Диссипативные структуры.
- •Сценарий образования упорядоченных структур.
- •Примеры самоорганизации в неживой природе: Возникновение структуры как фазовый переход.
- •Бифуркации. Вероятностный характер эволюции системы. Динамический хаос.
- •Аттракторы. Фракталы.
- •Лекция 17. Происхождение и эволюция Вселенной.
- •Строение Вселенной.
- •Гипотезы о возникновении Вселенной.
- •«Инфляционная модель».
- •Физический вакуум.
- •Виды галактик. Млечный Путь.
- •Звезды и их эволюция. Главная последовательность.
- •Черные дыры.
- •Солнце и Солнечная система.
- •Лекция 18. Планета Земля.
- •Формирование и строение Земли.
- •Строение Земли.
- •История геологического развития Земли.
- •Литосфера и ее экологические функции.
- •Магнитосфера.
- •Гидросфера.
- •Атмосфера.
- •Географическая оболочка Земли.
- •Климат.
- •Географическая широта местности
- •10. Глобальные изменения климата.
- •Лекция 19. Элементы химии.
- •Химические элементы. Периодическая система элементов д.И.Менделеева.
- •Понятие вещества. Агрегатные состояния вещества. Виды химических связей.
- •Реакционная способность веществ. Виды химических реакций.
- •Тепловой эффект химических реакций и энтропия.
- •Химическое равновесие. Катализ и его виды.
- •Лекция 20. Вода и гипотезы о происхождении жизни на Земле. Самоорганизация в живой природе.
- •Особенности биологического уровня организации материи.
- •Вода как колыбель жизни.
- •Исторический обзор основных концепций возникновения жизни на Земле.
- •Самоорганизация в живой природе.
- •Лекция 21. Биосфера и проблемы экологии. Понятие о ноосфере.
- •Уровни организации живой материи.
- •Биосфера.
- •Биоценоз. Биогеоценоз.
- •Проблемы взаимодействия человека и природы.
- •Возможные сценарии развития биосферы.
- •Учение в.И.Вернадского о ноосфере.
- •Лекция 22. Молекулярные основы жизни. Днк и информация.
- •Молекулярные механизмы жизни.
- •Элементарные представления о строении клетки и ее жизнедеятельности.
- •Днк и информация.
- •Мутации как ошибки при репликации днк.
- •Проблемы биологической этики.
- •Поведенческая информация. Информация и жизнь.
- •Лекция 23. Феномен человека.
- •Антропология.
- •Человек как высшая ступень эволюции. Основные этапы антропогенеза.
- •Концепция географически детерминированного этногенеза л.Н.Гумилева..
- •Космические и биологические циклы. Русский космизм (идеи а.Л.Чижевского, к.Э.Циолковского).
- •Антропный принцип.
- •Человек: индивидуум, личность, индивидуальность.
- •Самоорганизация в социально-экономических системах.
- •Лекция 24. Теория эволюции в биологии. Принципы универсального эволюционизма. Путь к единой культуре.
- •Додарвиновский эволюционизм. Идеи Ламарка и Кювье.
- •Классическая теория эволюции ч.Дарвина.
- •Современная теория эволюции.
- •Квантовый характер видообразования.
- •Принцип универсального эволюционизма.
- •Вопросы для подготовки к экзамену
- •Задачи для самостоятельного решения
- •Рекомендуемая литература
Реакционная способность веществ. Виды химических реакций.
Химические реакции – это основа химии. От чего же зависит возможность осуществления реакции, т.е. перестройки химических связей?
Принципиальный ответ дают законы термодинамики. Обычно реакция происходит, если в продуктах реакции суммарная энергия связей меньше, чем в исходных веществах. Более точные исследования показали, что важно не только уменьшение энергии, но и возрастание энтропии. Реакция возможна, если она сопровождается уменьшением функции свободной энергии, сочетающей в себе энергию и энтропию:
.
Долгое время способность или неспособность веществ вступить в реакцию объясняли «химическим сродством», но ни качественного, ни тем более количественного обоснования этот термин не имел. Ответ удалось получить лишь благодаря квантовой механике и дочерней науке – квантовой химии. Оказалось, что реакционная способность молекулы зависит от строения электронных оболочек атомов. Если оболочка такова, что не способна к перестраиванию, то атомы отталкиваются под действием кулоновских сил. Если же она может перестроиться, то оболочки атомов обобществляются, приобретают новую форму и образуют химическую связь, притягиваясь одновременно к обоим ядрам. Часто для преодоления сил кулоновского отталкивания и вступления молекул в реакцию требуется некоторая дополнительная энергия, называемая энергией активации ЕА.
Все огромное разнообразие химических реакций можно разделить на группы, руководствуясь каким-либо признаком.
По обратимости: обратимые и необратимые.
По скорости протекания: быстрые и медленные. Скорость реакции зависит от частоты колебаний атомов в исходных веществах, т.е. в конечном счете от температуры. Особую роль в ускорении реакций играют катализаторы, в замедлении – ингибиторы.
По тепловому эффекту: эндотермические, идущие с поглощением теплоты, и экзотермические, идущие с выделением теплоты.
По исходным веществам и продуктам реакции:
X + Y = Z – реакции соединения,
Z = X + Y – реакции разложения,
X + YZ = XY + Z – реакции замещения,
XY + ZR = XZ + YR – реакции обмена.
Тепловой эффект химических реакций и энтропия.
Следствием I начала термодинамики является закон Гесса: тепловой эффект химической реакции (т.е. изменение внутренней энергии системы в результате реакции) зависит только от начального и конечного состояния участвующих в реакции веществ и не зависит от промежуточных стадий процесса. Из закона Гесса следует, что с термохимическими уравнениями можно поступать, как с обыкновенными алгебраическими уравнениями.
Что при этом происходит с энтропией? Если в экзотермических реакциях ее увеличение довольно очевидно (теплота выделяется в окружающую среду, увеличивая степень ее неупорядоченности), то в случае эндотермической реакции все не так очевидно. Действительно, в систему поступила энергия, использованная на образование новых связей. Продукты реакции обладают большей энергией, чем исходные. Эта энергия взята из окружающей среды, значит, энтропия окружающей среды также уменьшилась. Не произошло ли нарушение II начала термодинамики? Для ответа на этот вопрос надо учесть еще один факт: возникает беспорядок нового типа, в процессе реакции в сосуде присутствуют одновременно продукты реакции и исходные вещества, т.е. смесь. А энтропия смеси всегда выше, чем энтропия отдельно взятых веществ (качественно это можно понять на примере диффузии: это необратимый процесс, т.к. энтропия возрастает при смешивании веществ). Расчеты показывают, что возрастание энтропии в результате смешения выше, чем убыль, вызванная упомянутыми причинами. Отметим, что согласно современным представлениям, в реакции участвуют и стенки сосуда, и растворители, и случайные примеси. При расчете баланса энтропии и энергии их также нужно учитывать.