
- •Федеральное агентство по образованию
- •Е.А.Коломийцева концепции современного естествознания Краткий курс лекций
- •Содержание
- •Вступление
- •Лекция 1. Предмет и методы естествознания
- •1. Предмет естествознания. Естественнонаучная и гуманитарная культуры.
- •2. Наука и научный метод.
- •3. Исторические аспекты развития естествознания.
- •4. Основные разделы современного естествознания.
- •5. Структурные уровни организации материи.
- •Лекция 2. Практические методы физических исследований. Физические величины и измерения.
- •Измерения и измерительные приборы.
- •Для измерения времени также нужен эталон. В настоящее время считается, что 1 секунда – это время, за которое происходит 9192631830 периодов колебаний излучения, испускаемого изотопом цезия .
- •Физические размерности. Международная система си.
- •4. Погрешности измерений.
- •Перечислим основные факторы неточности эксперимента. Помимо грубых промахов самого экспериментатора, их можно разделить на две группы:
- •1) Систематические, которые определяются классом точности прибора (1/2 цены деления) и, возможно, какой-то постоянной ошибкой прибора;
- •Эксперимент.
- •Использование результатов эксперимента. Теория. Критерии научности и истинности теории.
- •Классическая механика и границы ее применимости. Материальная точка. Система отсчета.
- •Траектория, путь и перемещение. Радиус-вектор. Кинематические уравнения.
- •Средняя и мгновенная скорости. Ускорение.
- •Движение материальной точки по окружности. Угол поворота, угловая скорость и угловое ускорение.
- •Связь между линейными и угловыми кинематическими характеристиками движения.
- •Лекция 4. Силы в природе. Фундаментальные взаимодействия.
- •Понятие силы.
- •Динамика макромира. Законы классической механики.
- •Силы в природе.
- •Фундаментальные взаимодействия.
- •Лекция 5. Меры движения – импульс и энергия. Законы сохранения и симметрия пространства - времени.
- •Импульс.
- •Работа в механике. Консервативные и неконсервативные силы.
- •Виды энергии.
- •Момент импульса.
- •Законы сохранения и симметрия пространства-времени.
- •Концепции близкодействия и дальнодействия.
- •Лекция 7. Мегамир. Элементы частной теории относительности. Релятивистская концепция.
- •Движение с большими скоростями.
- •Постулаты Эйнштейна и принцип относительности Эйнштейна.
- •Преобразования Лоренца и следствия из них.
- •Правило сложения скоростей.
- •Масса. Взаимосвязь массы и энергии.
- •Представление об общей теории относительности.
- •Интервал и принцип причинности.
- •Лекция 8. Проблемы пространства и времени.
- •Что мы понимаем под пространством?
- •Основные свойства пространства.
- •Проблемы в представлениях о пространстве.
- •Способы измерения времени.
- •Основные свойства времени.
- •Проблемы в представлениях о времени.
- •Лекция 9. Волновые процессы.
- •Колебания.
- •Скорость и ускорение при колебаниях. Фазовое пространство.
- •Свободные гармонические затухающие колебания и вынужденные колебания.
- •Волновые процессы.
- •Свойства волн.
- •Электромагнитные волны в природе и технике.
- •Автоволны.
- •Лекция 10. Законы микромира. Корпускулярно-волновой дуализм материи. Принцип дополнительности и проблемы причинности.
- •Гипотеза квантов энергии м.Планка.
- •Гипотеза де Бройля. Волновые свойства частиц.
- •Динамика микрочастиц. Принцип неопределенностей Гейзенберга
- •- Принцип неопределенностей Гейзенберга.
- •Представление о квантовой механике.
- •Проблемы причинности.
- •Лекция 11. Элементарные частицы. Кварки.
- •Классификация элементарных частиц.
- •Взаимные превращения элементарных частиц.
- •Гипотеза кварков.
- •Элементарные частицы и фундаментальные взаимодействия.
- •Лекция 12. Радиоактивность
- •Радиоактивные распады.
- •Виды радиоактивных распадов.
- •Законы радиоактивных распадов.
- •Воздействие излучения на человека.
- •Дозиметрия.
- •Лекция 13. Динамические и статистические закономерности.
- •Термодинамический и статистический методы изучения многочастичных систем.
- •Термодинамическое равновесие и квазистатические процессы.
- •Понятие температуры.
- •Теплота, внутренняя энергия и работа.
- •Лекция 14. Энергия в термодинамических процессах.
- •Первое начало термодинамики как закон сохранения энергии.
- •Тепловые машины. Цикл Карно.
- •Деградация энергии. Тепловое загрязнение окружающей среды.
- •Традиционные и нетрадиционные источники энергии.
- •Лекция 15. Порядок и беспорядок в природе. Фазовые переходы. Энтропия. Второе начало термодинамики и «стрела времени».
- •Энтропия.
- •Статистическое толкование энтропии.
- •Второе начало термодинамики.
- •Энтропия и информация.
- •Фазовые переходы. Нарушения симметрии при фазовых переходах и параметр порядка.
- •Лекция 16. Синергетика. Соотношение порядка и хаоса в открытых неравновесных системах.
- •Открытые неравновесные системы.
- •Функция диссипации. Диссипативные структуры.
- •Сценарий образования упорядоченных структур.
- •Примеры самоорганизации в неживой природе: Возникновение структуры как фазовый переход.
- •Бифуркации. Вероятностный характер эволюции системы. Динамический хаос.
- •Аттракторы. Фракталы.
- •Лекция 17. Происхождение и эволюция Вселенной.
- •Строение Вселенной.
- •Гипотезы о возникновении Вселенной.
- •«Инфляционная модель».
- •Физический вакуум.
- •Виды галактик. Млечный Путь.
- •Звезды и их эволюция. Главная последовательность.
- •Черные дыры.
- •Солнце и Солнечная система.
- •Лекция 18. Планета Земля.
- •Формирование и строение Земли.
- •Строение Земли.
- •История геологического развития Земли.
- •Литосфера и ее экологические функции.
- •Магнитосфера.
- •Гидросфера.
- •Атмосфера.
- •Географическая оболочка Земли.
- •Климат.
- •Географическая широта местности
- •10. Глобальные изменения климата.
- •Лекция 19. Элементы химии.
- •Химические элементы. Периодическая система элементов д.И.Менделеева.
- •Понятие вещества. Агрегатные состояния вещества. Виды химических связей.
- •Реакционная способность веществ. Виды химических реакций.
- •Тепловой эффект химических реакций и энтропия.
- •Химическое равновесие. Катализ и его виды.
- •Лекция 20. Вода и гипотезы о происхождении жизни на Земле. Самоорганизация в живой природе.
- •Особенности биологического уровня организации материи.
- •Вода как колыбель жизни.
- •Исторический обзор основных концепций возникновения жизни на Земле.
- •Самоорганизация в живой природе.
- •Лекция 21. Биосфера и проблемы экологии. Понятие о ноосфере.
- •Уровни организации живой материи.
- •Биосфера.
- •Биоценоз. Биогеоценоз.
- •Проблемы взаимодействия человека и природы.
- •Возможные сценарии развития биосферы.
- •Учение в.И.Вернадского о ноосфере.
- •Лекция 22. Молекулярные основы жизни. Днк и информация.
- •Молекулярные механизмы жизни.
- •Элементарные представления о строении клетки и ее жизнедеятельности.
- •Днк и информация.
- •Мутации как ошибки при репликации днк.
- •Проблемы биологической этики.
- •Поведенческая информация. Информация и жизнь.
- •Лекция 23. Феномен человека.
- •Антропология.
- •Человек как высшая ступень эволюции. Основные этапы антропогенеза.
- •Концепция географически детерминированного этногенеза л.Н.Гумилева..
- •Космические и биологические циклы. Русский космизм (идеи а.Л.Чижевского, к.Э.Циолковского).
- •Антропный принцип.
- •Человек: индивидуум, личность, индивидуальность.
- •Самоорганизация в социально-экономических системах.
- •Лекция 24. Теория эволюции в биологии. Принципы универсального эволюционизма. Путь к единой культуре.
- •Додарвиновский эволюционизм. Идеи Ламарка и Кювье.
- •Классическая теория эволюции ч.Дарвина.
- •Современная теория эволюции.
- •Квантовый характер видообразования.
- •Принцип универсального эволюционизма.
- •Вопросы для подготовки к экзамену
- •Задачи для самостоятельного решения
- •Рекомендуемая литература
2. Наука и научный метод.
Наука - термин, обозначающий обобщаемые и систематизированные знания в любой области.
С древнейших времен люди пытались понять сущность наблюдаемых явлений природы и их закономерности. Причем первым побудительным мотивом для этого служил практический интерес – возможность использовать полученные знания. Так изначально сосуществовали два аспекта естествознания – познавательный и прикладной. В современной науке также присутствуют оба указанных аспекта.
Познание законов природы и создание на этой основе картины мира – непосредственная, ближайшая цель естествознания. Конечная задача – содействие практическому использованию этих законов. Не всегда перспектива практического применения того или иного открытия очевидна с самого начала, теория, как правило, развивается с некоторым опережением.
Итак, в системе естествознания мы выявили два уровня – уровень теоретический и уровень практический (экспериментальный).
Использующиеся при теоретическом и практическом освоении действительности приемы составляют научный метод. Таким образом, наука отвечает на вопрос: «Что такое реальность?», а научный метод указывает, как с этой реальностью обращаться.
Научные методы бывают различного уровня:
Единые (всеобщие): диалектический, метафизический;
Общенаучные (используемые во всех науках): практические (эмпирические) – наблюдение, описание, измерение, эксперимент, и теоретические - сравнение, аналогтя, анализ и синтез, идеализация, обобщение, восхождение от абстрактного к конкретному, индукция и дедукция;
Специально-научные (применяемые в конкретных дисциплинах).
Особенностью современного естествознания является его конструктивная направленность, т.е. реальность не только изучается, но и проектируется с определенными целями. Это выражается в широком применении методов математического моделирования процессов и явлений с помощью ЭВМ.
Начальным этапом исследования является, как правило, практика, она же служит и окончательным критерием истинности (адекватности) любой теории, а также целью исследования.
3. Исторические аспекты развития естествознания.
Процесс формирования естествознания не был равномерным. Развитие научной мысли можно обобщенно разделить на этапы. На каждом этапе господствовал определенный стиль мышления, который базировался на имевшихся к тому времени достижениях науки. Тем самым задавался круг задач, подлежащих исследованию, и методология исследования. Такие общепризнанные научные достижения и господствующий стиль научного мышления называются парадигмой. Смена, зачастую коренная ломка существующей парадигмы означает переход к следующему этапу развития естествознания и называется научно-технической революцией.
Первый этап, расцвет которого происходил в античный период, характеризуется преобладанием чисто умозрительных рассуждений о природе вещей и явлений. Естествознание на этой стадии еще не отделено от философии и по сути они составляют одну науку натурфилософию, в которой отражены представления древних о мире как едином целом. Несмотря на поразительные озарения Демокрита, Архимеда и др., натурфилософию еще нельзя считать наукой в современном понимании.
Первую научно-техническую революцию многие историки науки связывают с деятельностью Аристотеля. Именно тогда наука стала отличаться от других форм познания мира. Была высказана идея о шарообразности Земли, построена геоцентрическая модель мира.
Идеи Аристотеля определили состояние науки вплоть до эпохи Возрождения.
Вторая научно-техническая революция связана с введением в научную практику эксперимента как способа проверки гипотез. В этот период происходило накопление фактического материала и его обобщение, естествознание обрело более привычную для нас форму. В трудах ученых Нового времени – Галилея, Кеплера, Ньютона – были заложены основы классической науки.
Второй этап развития естествознания длился до конца Х1Х века, это время полного расцвета классической науки. Установлен закон сохранения и превращения энергии. оптики, электродинамики, термодинамики, построена теоретическая механика (Гамильтон, Лагранж, Максвелл, Френель, Больцман). В химии установлено строгое понятие элемента (Лавуазье), изучаются химические реакции, соединения, открыт периодический закон Менделеева, возникла структурная химия (Бутлеров). В биологии побеждают важнейшие идеи об эволюции всего живого (Ламарк, Дарвин); открыта клетка (Шлейден и Шванн) и материальный носитель наследственности – ген (Мендель).
Таким образом, подготовлялись условия для новой научно-технической революции, которая захватила весь ХХ век и продолжается поныне.
Для третьей научно-технической революции характерно:
Тесное взаимодействие различных областей науки, развитие междисциплинарных связей. Подавляющее большинство открытий происходит на стыках наук.
Переход от классических представлений к неклассическим: создание общей и специальной теории относительности, квантовой теории поля (квантовая механика).
Исследование сложнейших неравновесных нелинейных процессов, происходящих в сложных системах. Оказывается, что эти процессы, которые приводят к самоорганизации системы, к возникновению новых структур, протекают сходно в различных областях естествознания. Это позволяет рассматривать с единых позиций такие дисциплины, как физика, космология, геология, химия, биология и даже традиционно гуманитарные дисциплины, такие как история, этнология, социология, экономика. Такой подход получил название синергетика. Это наиболее перспективное направление современного естествознания.
Бурное развитие информационных технологий, позволяющих проводить громадный объем вычислений с большой скоростью и исследовать сложнейшие процессы. Информация становится в один ряд с материей.
Во главу угла современного естествознания ставится человек, его интересы и цели. Наука приобретает этическую окраску.