
- •Введение
- •Раздел I. Введение в теорию вероятностей
- •Понятие о случайном событии
- •Классическое определение вероятности
- •Относительная частота. Статистическое определение вероятности.
- •Геометрическая вероятность
- •Свойства вероятностей Сложение вероятностей несовместимых событий
- •Умножение вероятностей
- •Сложение вероятностей совместимых событий
- •Формула полной вероятности
- •Основные формулы комбинаторики
- •Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- •Закон распределения случайной величины
- •Теоретические распределения вероятностей
- •Биномиальное распределение
- •Распределение Пуассона
- •Числовые характеристики дискретных случайных величин
- •Нормальное распределение
- •Вопросы для самопроверки:
- •Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- •Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- •Признаки и показатели
- •Правила ранжирования
- •Способы группировки первичных данных.
- •Схемы (модели) научного исследования
- •Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- •Метод автоконтроля
- •Метод дублирования
- •Метод последовательного пополнения групп
- •Численность контрольных и экспериментальных групп
- •Научные гипотезы
- •Направленные гипотезы
- •Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •Уровни статистической значимости
- •1 Рода.
- •Вопросы для самопроверки
- •Раздел III. Статистические методы обработки экспериментальных данных
- •Проверка гипотезы о законе распределения
- •Χ2 Пирсона
- •Описательные статистики Концепция сжатия экспериментальных данных
- •Показатели центральной тенденции. Средние.
- •Медиана
- •Персентили
- •Показатели изменчивости
- •Стандартизованные данные
- •Показатели асимметрии и эксцесса
- •Эксцесс
- •Работа с качественными переменными Количественная оценка результатов эксперимента.
- •Вопросы для самопроверки:
- •Сравнение двух независимых групп т критерий Стьюдента
- •Критерии согласия для дисперсий
- •U критерий Маана-Уитни
- •Сравнение качественных признаков Критерий χ2
- •Сравнение долей
- •Точный тест Фишера
- •Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- •Критерий Краскела-Уоллиса
- •Сравнение двух зависимых групп Парный т критерий Стьюдента
- •Парный критерий т – Вилкоксона
- •Критерий x2r Фридмана
- •Тест Мак-Немара
- •Корреляционный анализ
- •Вычисление и интерпретация параметров парной линейной корреляции
- •Условия применения и ограничения корреляционно анализа
- •Вычисление и интерпретация параметров парной линейной корреляции
- •Измерение связи количественных признаков
- •Измерение связи порядковых признаков
- •Измерение связи номинальных признаков
- •Относительный риск. Отношение шансов
- •Статистическая оценка надежности параметров парной корреляции
- •Частная корреляция
- •Факторный анализ
- •Вопросы для самопроверки:
- •Регрессионный анализ
- •Метод наименьших квадратов
- •Выбор формы функциональной зависимости
- •Применение парного линейного уравнения регрессии
- •Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- •Логистическая регрессия
- •Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- •Анализ циклических изменений
- •Метод обычных средних
- •Метод корригирования средних
- •Метод отношения фактических данных
- •Ошибки, допускаемые при количественной характеристике сезонных колебаний
- •Кластерный анализ
- •Иерархическое дерево
- •Меры расстояния
- •Правила объединения или связи
- •Метод k средних
- •Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- •Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- •Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- •Одно или двухсторонняя p-оценка?
- •Парный или непарный тест?
- •Тест Фишера или хи-квадрат?
- •Регрессия или корреляция?
- •Вопросы для самопроверки:
- •Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- •Создание новой базы данных
- •Работа с файлами
- •Копирование и вставка данных
- •Работа с фильтрами
- •Работа с переменными и строками
- •Статистические методы Описательные статистики
- •Частотный анализ
- •Сравнение независимых выборок
- •Сравнение связанных выборок
- •Дисперсионный анализ
- •Корреляционный анализ
- •Множественная регрессия
- •Проверка типа распределения эмпирических данных
- •Вероятностный калькулятор
- •Задания для самостоятельной работы с программой
- •Список рекомендуемой литературы
- •Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- •Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок
Тест Фишера или хи-квадрат?
Когда Вы анализируете таблицы сопряженности с двумя строками и двумя столбцами, Вы можете использовать либо точный тест Фишера, либо тест хи-квадрат. Тест Фишера является более хорошим выбором, поскольку он всегда дает точное значение р-оценки. Хи-квадрат легче подсчитывать, но он дает только примерное значение р-оценки. Если компьютер делает все расчеты, Вы должны выбирать тест Фишера за исключением ситуации, когда Вы предпочитаете хи-квадрат на основе того, что он более хорошо известен. Вы должны совершенно четко избегать хи-квадрат в том случае, если количество наблюдений (любое число ниже 6). Когда значение больше р-оценки, которые получаются в результате использования теста хи-квадрат и теста Фишера будут очень похожи друг на друга.
Тест хи-квадрат рассчитывает примерные p-значения и поправка Йетса на непрерывность предназначена для того, чтобы сделать это приближение лучше. Без поправки Йетса p-значения слишком небольшие, однако если коррекция заходит слишком далеко, результирующая p-оценка оказывается слишком большой. Статистики дают различные рекомендации по отношению к поправке Йетса. Когда имеется большая выборка, то поправка Йетса не приводит к серьезным различиям. Если Вы выбираете тест Фишера, p-значение является точным и в этой ситуации поправка Йетса на непрерывность не является необходимой.
Регрессия или корреляция?
Линейная регрессия и корреляция являются очень похожими друг на друга и их легко спутать. В некоторых ситуациях имеет смысл выполнять оба типа расчета. Рассчитывайте линейную корреляцию, если Вы измеряете как Х, так и Y у каждого обследованного и хотите оценить насколько хорошо они связаны друг с другом. Выбирайте Пирсоновский (параметрический коэффициент) коэффициент корреляции если Вы предполагаете, что Х и Y были выбраны из Гауссовой популяции. В другом случае выбирайте непараметрический коэффициент корреляции Спирмена. Не рассчитывайте коэффициент корреляции или доверительный интервал если Вы сами воздействовали на значение переменной Х. Рассчитывайте линейную регрессию только в том случае, если одна из переменных Х по всей вероятности является предшественником или причиной изменения другой переменной Y. Совершенно четко выбирайте линейную регрессию, если Вы сами воздействовали на переменную Х. В линейной регрессии очень серьезные различия получаются в зависимости от того, какая переменная обозначается Х, а какая переменная обозначается Y, поскольку подсчеты при помощи линейной регрессии не симметричны по отношению к Х и Y. Если Вы поменяете местами эти две переменные, Вы можете получить другую регрессионную линию. В противоположность этому линейный коэффициент корреляции симметричный по отношению к Х и Y, и если Вы поменяете местами маркеры для Х и Y, Вы получите тот же самый корреляционный коэффициент.
Вопросы для самопроверки:
Перечислите требования, которые необходимы для вычисления критерия Стьюдента, критерия 2 Пирсона.
Что такое метод наименьших квадратов?
Сформулируйте в примерах задачу из области Вашей будущей специализации, при решении которой необходимо вычислить: а) регрессионное уравнение б) частные коэффициенты корреляции
Сформулируйте в содержательных понятиях задачи из области специализации, связанные с анализом динамических рядов.
Сформулируйте в содержательных понятиях задачи из области специализации, связанные с анализом циклических явлений.
На какие компоненты могут быть разложены динамические ряды и, какую информацию об исследуемом процессе несут эти компоненты?
Как можно определить какое из регрессионных уравнений наилучшим способом описывает тренд динамического ряда.
По каким показателям осуществляется объединение объектов в кластеры.