
- •Введение
- •Раздел I. Введение в теорию вероятностей
- •Понятие о случайном событии
- •Классическое определение вероятности
- •Относительная частота. Статистическое определение вероятности.
- •Геометрическая вероятность
- •Свойства вероятностей Сложение вероятностей несовместимых событий
- •Умножение вероятностей
- •Сложение вероятностей совместимых событий
- •Формула полной вероятности
- •Основные формулы комбинаторики
- •Дискретные и непрерывные случайные величины. Понятие «случайные величины»
- •Закон распределения случайной величины
- •Теоретические распределения вероятностей
- •Биномиальное распределение
- •Распределение Пуассона
- •Числовые характеристики дискретных случайных величин
- •Нормальное распределение
- •Вопросы для самопроверки:
- •Раздел II. Основные понятия и термины биологической статистики Генеральная совокупность и выборка
- •Непреднамеренный отбор. Метод последовательных номеров. Случайный и механический методы отбора
- •Признаки и показатели
- •Правила ранжирования
- •Способы группировки первичных данных.
- •Схемы (модели) научного исследования
- •Однофакторная и многофакторная модель Контрольные и экспериментальные группы
- •Метод автоконтроля
- •Метод дублирования
- •Метод последовательного пополнения групп
- •Численность контрольных и экспериментальных групп
- •Научные гипотезы
- •Направленные гипотезы
- •Статистические критерии
- •Параметрические критерии
- •Непараметрические критерии
- •Уровни статистической значимости
- •1 Рода.
- •Вопросы для самопроверки
- •Раздел III. Статистические методы обработки экспериментальных данных
- •Проверка гипотезы о законе распределения
- •Χ2 Пирсона
- •Описательные статистики Концепция сжатия экспериментальных данных
- •Показатели центральной тенденции. Средние.
- •Медиана
- •Персентили
- •Показатели изменчивости
- •Стандартизованные данные
- •Показатели асимметрии и эксцесса
- •Эксцесс
- •Работа с качественными переменными Количественная оценка результатов эксперимента.
- •Вопросы для самопроверки:
- •Сравнение двух независимых групп т критерий Стьюдента
- •Критерии согласия для дисперсий
- •U критерий Маана-Уитни
- •Сравнение качественных признаков Критерий χ2
- •Сравнение долей
- •Точный тест Фишера
- •Сравнение более двух независимых групп Однофакторный дисперсионный анализ Фишера
- •Критерий Краскела-Уоллиса
- •Сравнение двух зависимых групп Парный т критерий Стьюдента
- •Парный критерий т – Вилкоксона
- •Критерий x2r Фридмана
- •Тест Мак-Немара
- •Корреляционный анализ
- •Вычисление и интерпретация параметров парной линейной корреляции
- •Условия применения и ограничения корреляционно анализа
- •Вычисление и интерпретация параметров парной линейной корреляции
- •Измерение связи количественных признаков
- •Измерение связи порядковых признаков
- •Измерение связи номинальных признаков
- •Относительный риск. Отношение шансов
- •Статистическая оценка надежности параметров парной корреляции
- •Частная корреляция
- •Факторный анализ
- •Вопросы для самопроверки:
- •Регрессионный анализ
- •Метод наименьших квадратов
- •Выбор формы функциональной зависимости
- •Применение парного линейного уравнения регрессии
- •Корреляционно-регрессионные модели (крм) и их применение в анализе и прогнозе.
- •Логистическая регрессия
- •Анализ динамических изменений Применение метода наименьших квадратов при исследовании тенденции развития
- •Анализ циклических изменений
- •Метод обычных средних
- •Метод корригирования средних
- •Метод отношения фактических данных
- •Ошибки, допускаемые при количественной характеристике сезонных колебаний
- •Кластерный анализ
- •Иерархическое дерево
- •Меры расстояния
- •Правила объединения или связи
- •Метод k средних
- •Выбор между параметрическими и непараметрическими тестами: легкая ситуация.
- •Выбор между параметрическими и непараметрическими тестами: сложные случаи.
- •Выбор между параметрическим и непараметрическим тестом: насколько это на самом деле влияет на результат?
- •Одно или двухсторонняя p-оценка?
- •Парный или непарный тест?
- •Тест Фишера или хи-квадрат?
- •Регрессия или корреляция?
- •Вопросы для самопроверки:
- •Раздел IV. Работа с программой easystatistics Общие сведения о программе EasyStatistics
- •Создание новой базы данных
- •Работа с файлами
- •Копирование и вставка данных
- •Работа с фильтрами
- •Работа с переменными и строками
- •Статистические методы Описательные статистики
- •Частотный анализ
- •Сравнение независимых выборок
- •Сравнение связанных выборок
- •Дисперсионный анализ
- •Корреляционный анализ
- •Множественная регрессия
- •Проверка типа распределения эмпирических данных
- •Вероятностный калькулятор
- •Задания для самостоятельной работы с программой
- •Список рекомендуемой литературы
- •Граничные (критические) значения 2-критерия, соответствующие разным вероятностям допустимой ошибки и разным степеням свободы
- •Критические значения коэффициентов корреляции для различных степеней свободы (n - 2) и разных вероятностей допустимых ошибок
Критерии согласия для дисперсий
против
Для проверки нулевой гипотезы используется критерий отношений дисперсий Фишера.
.
Так как суммы квадратов отклонений нормально распределенных случайных величин от их средних значений имеют распределение 2, то числитель и знаменатель представляют собой величины с распределением 2, поделенные соответственно на n1 и n2, и следовательно, их отношение имеет F-распределение с n1-1 и n2-1 степенями свободы.
Общепринято и так построены таблицы F-распределения что в качестве числителя берется большая из дисперсий, и поэтому определяется только одна критическая точка, соответствующая выбранному уровню значимости.
U критерий Маана-Уитни
Критерий Манна-Уитни представляет непараметрическую альтернативу t-критерия для независимых выборок.
Критерий Манна-Уитни предполагает, что рассматриваемые переменные измерены, по крайней мере, в порядковой шкале (ранжированы). Интерпретация теста по существу похожа на интерпретацию результатов t-критерия для независимых выборок, за исключением того, что U критерий вычисляется, как сумма индикаторов попарного сравнения элементов первой выборки с элементами второй выборки.
U критерий - наиболее мощная (чувствительная) непараметрическая альтернатива t-критерия для независимых выборок; фактически, в некоторых случаях он имеет даже большую мощность, чем t-критерий.
Если объем выборки больше 20, то распределение выборки для U статистики быстро сходится к нормальному распределению.
Поэтому вместе с U статистикой часто показываются z значения (для нормального распределения и соответствующее p-значение.
Проверим гипотезу о принадлежности сравниваемых независмых выборок к одной и той же генеральной совокупности с помощью непараметрического U-критерия Манна-Уитни. Сравним результаты, полученные в примере 1 для 2-го и 3-го столбцов таблицы по критерий Стьюдента, с результатами непараметрического сравнения. Для расчета U-критерия расположим варианты сравниваемых выборок в порядке возрастания в один обобщенный ряд и присвоим вариантам обобщенного ряда ранги от 1 до n1 + n2. Первая строка представляет собой варианты первой выборки, вторая - второй выборки, третья - соответствующие ранги в обобщенном ряду:
6 |
7 |
7 |
8 |
8 |
|
9 |
9 |
9 |
|
|
10 |
11 |
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
|
|
9 |
9 |
|
|
11 |
11 |
12 |
12 |
12 |
13 |
13 |
1 |
2,5 |
2,5 |
5 |
5 |
5 |
9 |
9 |
9 |
9 |
9 |
12 |
14 |
14 |
14 |
17 |
17 |
17 |
19,5 |
19,5 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
Надо обратить внимание, что если имеются одинаковые варианты, им присваивается средний ранг, однако значение последнего ранга должно быть равно n1 + n2 (в нашем случае 20). Это правило используют для проверки правильности ранжирования.
Отдельно для каждой выборки рассчитываем суммы рангов их вариант R1 и R2. В нашем случае:
R1 = 1 + 2,5 + 2,5 + 5 + 5 + 9 + 9 + 9 + 12 + 14 = 69
R2 = 5 + 9 + 9 + 14 + 14 + 17 + 17 +17 + 19,5 + 19,5 = 141
Для проверки правильности вычислений можно воспользоваться другим правилом: R1 + R2 = 0,5 * (n1 + n2) * (n1 + n2 + 1). В нашем случае R1 + R2 = 210.
Статистика U1 = 69 - 10*11/2 = 14; U2 = 141 - 10*11/2 = 86.
Для проверки одностороннего критерия выбираем минимальную статистику U1 = 14 и сравниваем ее с критическим значением для n1 = n2 = 10 и уровня значимости 1%, равным 19. Так как вычисленное значение критерия меньше табличного, нулевая гипотеза отвергается на выбранном уровне значимости, и различия между выборками признаются статистически значимыми.