Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vstyp_mpdo.doc
Скачиваний:
11
Добавлен:
28.09.2019
Размер:
1.69 Mб
Скачать

527. Метод множників Лагранжа. Теорема Лагранжа. Алгоритм розв'язування задачі на безумовний екстремум.

Ідея методу множників Лагранжа полягає в заміні початкової задачі простішою. Для цього цільову функцію замінюють іншою, з більшою кількістю змінних, тобто такою, яка включає в себе умови, що подані як обмеження. Після такого перетворення дальше розв’язування задачі полягає в знаходженні екстремуму нової функції, на змінні якої не накладено ніяких обмежень. Тобто від початкової задачі пошуку умовного екстремуму переходимо до задачі відшукання безумовного екстремального значення іншої функції. Отже, завдяки такому перетворенню можливе застосування методів класичного знаходження екстремуму функції кількох змінних.

Узагальнення необхідної умови існування локального екстремуму функції n змінних має аналогічний вигляд. Отже, для розв’язування задачі необхідно знайти вирази частинних похідних нової цільової функції за кожною змінною і прирівняти їх до нуля. В результаті отримаємо систему рівнянь. Її розв’язок визначає так звані стаціонарні точки, серед яких є і шукані екстремальні значення функції.

Формулювання теореми Лагранжа

Якщо функція f неперервна на проміжку , диференційована в , то знайдеться принаймні одна точка така, що має місце формула:

Ця формула і називається формулою Лагранжа, або формулою про скінченні прирости.

У теорії дослідження функцій задача на відшукання екстремальних значень не містить ніяких додаткових умов щодо змінних і такі задачі належать до задач відшукання безумовного екстремуму функції. Локальний та глобальний екстремуми тоді визначаються з необхідних та достатніх умов існування екстремуму функції.

528. Поняття про опуклі функції. Геометрична інтерпретація задачі опуклого програмування на площині.

Нехай задано n-вимірний лінійний простір Rn. Функція , що задана на опуклій множині , називається опуклою, якщо для будь-яких двох точок та з множини X і будь-яких значень виконується співвідношення: .

Якщо нерівність строга і виконується для , то функція називається строго опуклою.

Слід зазначити, що опуклість та угнутість функції визначаються лише відносно опуклих множин у , оскільки за наведеними означеннями разом з двома будь-якими точками та множині X належать також точки їх лінійної комбінації: для всіх значень , що можливо лише у разі, коли множина X є опуклою.

529. Сідлова точка та необхідні і достатні умови її існування. Теорема Куна-Таккера.

Для розроблення методів розв’язування окремих типів задач нелінійного програмування важливе значення має поняття сідлової точки, а також визначення необхідних і достатніх умов існування сідлових точок функції Лагранжа у (n + m)-вимірному просторі змінних за довільних умов, які можуть накладатися на їх знаки (необхідні і достатні умови існування сідлової точки функції Лагранжа за відсутності обмежень на знаки змінних

необхідні умови сідлової точки:

для тих індексів j, де .

для недодатних координат необхідна умова має вигляд:

для тих індексів j, де . необхідною умовою є:

, — довільного знака.

Узагальнення всіх випадків приводить до рівняння:

.

Теорема Куна—Таккера дає змогу встановити типи задач, для яких на множині допустимих розв’язків існує лише один глобальний екстремум зумовленого типу. Вона тісно пов’язана з необхідними та достатніми умовами існування сідлової точки.

Розглянемо задачу нелінійного програмування, яку, не зменшуючи загальності, подамо у вигляді: , , .

Теорема Куна—Таккера. Вектор Х* є оптимальним розв’язком задачі тоді і тільки тоді, коли існує такий вектор , що при для всіх точка є сідловою точкою функції Лагранжа ,

і функція мети для всіх угнута, а функції — опуклі.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]