Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
vstyp_mpdo.doc
Скачиваний:
11
Добавлен:
28.09.2019
Размер:
1.69 Mб
Скачать

Якщо розглядається задача на відшукання мінімального значення цільової функції, то формулюється така теорема.

Теорема 2.7. Якщо для деякого вектора виконується умова , то план не є оптимальним і можна побудувати такий план Х, для якого виконуватиметься нерівність .

Доведення аналогічне попередньому.

507. Знаходження оптимального розв'язку задачі лінійного програмування. Алгоритм симплексного методу.

Нехай невироджену задачу лінійного програмування представлено в канонічному вигляді:

,

де X = (x1, …, xn) — вектор змінних, C = (c1, …., cn), B = (b1, …, bm)T, Aj = (a1j, …, amj)T, j = 1, …, n — задані вектори, T — знак транспонування, та

відмінні від нуля компоненти опорного плану, для полегшення пояснення розташовані на перших m місцях вектору X. Базис цього плану — . Тоді

, (1)

, (2)

де значення лінійної форми на даному плані. Так як вектор-стовпці матриці A лінійно незалежні, будь який із векторів умов Aj розкладається по них єдиним чином:

, (3)

, (4)

де xij коефіцієнт розкладання. Система умов

, (5)

zk ≥ 0, xj = 0, j = m + 1, …, n, jk (6) при заданому k визначає в просторі змінних задачі промінь, який виходить із точки, яка відповідає опорному плану, що розглядається. Нехай значення змінної xk при русі по цьому променю дорівнює θ, тоді значення базисних змінних дорівнюють xi(θ). В цих позначеннях рівняння (5) можна представити у вигляді

. (7)

помноживши рівняння (3) на θ при j = k та віднявши від рівняння (1), отримаємо

.(8)

Із рівнянь (7-8) отримаємо

. (9)

Оскільки xi(θ) при θ = 0 визначають план задачі, то найбільше θ, яке не порушує обмеження xi (θ) ≥ 0, визначається із умови

. (10)

де I = {i | xik > 0}.

В силу невиродженості задачі мінімум досягається не більш ніж для одного i = J та θ > 0. Значення лінійної форми при θ = θ0 визначається із рівнянь (9), (4), (2)

,

де Δk = zk — ck. Очевидно, Δj = 0 для j = 1, …, m.

Нехай  — початковий базис із m одиничних векторів. Всі дані задачі записуються у вигляді симплекс-таблиці (першої ітерації обчислювального процесу). Симплекс-алгоритм розв'язання задачі лінійного програмування складається із наступних операцій:

  1. знайти Δk = minjΔj. Якщо Δk = 0, тоді план, який розглядається оптимізовано; якщо Δk < 0, вектор Ak вводиться в базис;

  2. знайти θ0 та l, для якого , із формули (10). Якщо I = Λ — порожня множина, лінійна форма необмежена зверху; якщо I ≠ Λ вектор Al виводиться із базису;

  3. за знайденими l, k обчислити нові значення елементів таблиці за формулами

(12)

,

де та перейти до виконання операції (1) з новими значеннями всіх xij = x'ij.

508. Симплексний метод із штучним базисом. Ознака оптимальності плану із штучним базисом.

Розглянемо задачу лінійного програмування:

(2.60)

(2.61)

(2.62)

Задача подана в канонічному вигляді і система обмежень (2.61) не містить одиничної матриці. Отримати одиничну матрицю можна, якщо до кожного рівняння в системі обмежень задачі додати одну змінну . Такі змінні називають штуч­ними. (Не обов’язково кількість введених штучних змінних має дорівнювати m. Їх необхідно вводити лише в ті рівняння системи обмежень, які не розв’язані відносно базисних змінних.) Допустимо, що система рівнянь (2.61) не містить жодного одиничного вектора, тоді штучну змінну вводять у кожне рівняння:

(2.63)

У результаті додавання змінних у рівняння системи (2.61) область допустимих розв’язків задачі розширилась. Задачу з системою обмежень (2.63) називають розширеною, або М-задачею. Розв’язок розширеної задачі збігатиметься з розв’язком початкової лише за умови, що всі введені штучні змінні в оптимальному плані задачі будуть виведені з базису, тобто дорівнюватимуть нулеві. Тоді система обмежень (2.63) набуде вигляду (2.61) (не міститиме штучних змінних), а розв’язок розширеної задачі буде розв’язком і задачі (2.60)—(2.62).

Згідно з симплексним методом до базису вводять змінні, які покращують значення цільової функції. Для даної задачі на максимум вони мають його збільшувати. Отже, для того, щоб у результаті процедур симплексних перетворень виключалися з базису штучні змінні, потрібно ввести їх у цільову функцію з від’ємними коефіцієнтами. Тобто цільова функція набуде вигляду:

(У разі розв’язання задачі на відшукання мінімального значення цільової функції вводять коефіцієнти, які є досить великими числами. Цільова функція тоді має вигляд: ).

Припускається, що величина М є досить великим числом. Тоді якого б малого значення не набувала відповідна коефіцієнту штучна змінна , значення цільової функції буде від’ємним для задачі на максимум та додатним для задачі на мінімум і водночас значним за модулем. Тому процедура симплексного методу одразу вилучає відповідні змінні з базису і забезпечує знаходження плану, в якому всі штучні змінні .

Якщо в оптимальному плані розширеної задачі існує хоча б одне значення , то це означає, що початкова задача не має розв’язку, тобто система обмежень несумісна.

Для розв’язання розширеної задачі за допомогою симплексних таблиць зручно використовувати таблиці, оцінкові рядки яких поділені на дві частини-рядки. Тоді в (m+2)-му рядку записують коефіцієнти з М, а в (m+1)-му — ті, які не містять М. Вектор, який підлягає включенню до базису, визначають за (m+2)-м рядком. Ітераційний процес по (m+2)-му рядку проводять до повного виключення всіх штучних змінних з базису, потім процес визначення оптимального плану продовжують за (m+1)-им рядком.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]