Добавил:
researchgate.net Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

Yuriy Kruglyak. Quantum Chemistry_Kiev_1963-1991

.pdf
Скачиваний:
28
Добавлен:
28.02.2018
Размер:
16.43 Mб
Скачать

 

 

 

 

 

 

 

 

A+

A+

A+

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kα

lα

mβ

 

 

 

 

 

 

 

 

A+

A+

A+

A+

× A+

A+

A+

 

 

0 .

 

 

 

 

(263)

 

iα

 

iβ

jα

 

 

jβ

 

kα lβ

mα

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

+

+

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

A A

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

kβ

lα

mα

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A linear combination of these configurations is written symbolically as

 

C1ααβ +C2αβα +C3βαα .

(264)

Two sets of coefficients (1/

 

 

 

 

 

 

 

 

and

(1/

 

 

 

 

give the two

6, 1 /

6, 2 /

6)

2, 1/ 2, 0)

orthonormal doublet basis vectors.

For configurations with five and seven unpaired electrons the number of different spin-configurations with MS = +1 / 2 is equal to 10 and 35, and the number of

possible mutually orthogonal basis vectors is equal to 5 and 14. The corresponding sets of coefficients in the linear combination of type (264) obtained by the VB method [24] with subsequent orthogonalization are collected in Table 8. For convenience of listing these vectors are not normalized.

Expansion coefficients of all 35 basis vectors with seven unpaired electrons over spin-configurations can be found in Table 9 [22].

Table 8 Expansion coefficients of the basis vectors

with five unpaired electrons over spin-configurations

Spin-

 

Basis vectors

 

configuration

 

 

 

 

 

 

 

 

 

 

 

 

 

αααββ

0

0

–1

–1

1

ααβαβ

0

0

1

1

1

αβααβ

2

0

0

0

–1

βαααβ

–2

0

0

0

–1

ααββα

0

0

–1

1

–1

αβαβα

–1

1

1

0

0

βααβα

1

–1

1

0

0

αββαα

–1

–1

0

–1

0

βαβαα

1

1

0

–1

0

ββααα

0

0

–1

1

1

The number of possible doublet basis vectors corresponding to different types of configurations is indicated in parenthesis in Table 7. The total number of basis vectors related to singly excited configurations of symmetry 2B2 is equal to 14,

130

doubly – to 74, triply – to 150, quadruply – to 122, quintuply – to 38, and sextuply – to 5.

Computations were performed with seven sets of basis vectors – G, I, II, III, IV, V, and F. Set G represents only the ground state configuration of benzyl. Each of the other sets was extended compared with previous one at the expense of the basis vectors corresponding to configurations of the next higher order of excitation. Thus the size of the configurational sets used was equal to 1, 15, 89, 239, 361, and 404 correspondingly. Set F with 404 configurations corresponds to the wave function with full CI.

In order to perform CI computations one usually finds analytical expressions for matrix elements of the Hamiltonian over the basis vectors of different types. In our case this traditional way is not acceptable for most of the expressions to be programmed are cumbersome and the number of them is too large.

We rejected a derivation of the analytical expressions for the Hamiltonian matrix elements and entrusted this job to a computer at an early stage. To do this it was necessary to program simple rules for calculation of the matrix elements in the second quantization representation which follow from Wick’s theorems and are equally good for configurations of arbitrary complexity. Necessary rules are given in

# 5 above.

Table 9 Expansion coefficients of the basis vectors with seven unpaired electrons

over spin-configurations

Spin-conf

 

 

 

 

 

Basis vectors

 

 

 

 

 

 

ααααβββ

–4

4

0

0

0

0

0

0

 

0

0

0

0

0

0

αααβαββ

1

–1

1

1

1

0

0

0

 

0

1

1

0

0

0

ααβααββ

1

–1

1

–1

–1

0

0

0

 

0

1

–1

0

0

0

αβαααββ

1

–1

–1

1

–1

0

0

0

 

0

–1

0

1

0

0

βααααββ

1

–1

–1

–1

1

0

0

0

 

0

–1

0

–1

0

0

αααββαβ

1

–1

1

–1

–1

0

0

0

 

0

–1

1

0

0

0

ααβαβαβ

1

–1

1

1

1

0

0

0

 

0

–1

–1

0

0

0

αβααβαβ

1

–1

–1

–1

1

0

0

0

 

0

1

0

1

0

0

βαααβαβ

1

–1

–1

1

–1

0

0

0

 

0

1

0

–1

0

0

ααββααβ

6

2

–2

0

0

0

0

0

 

0

0

0

0

0

0

αβαβααβ

–4

0

0

0

0

1

1

0

 

0

0

–1

–1

0

0

βααβααβ

–4

0

0

0

0

–1

–1

0

 

0

0

–1

1

0

0

αββαααβ

–4

0

0

0

0

–1

–1

0

 

0

0

1

–1

0

0

βαβαααβ

–4

0

0

0

0

1

1

0

 

0

0

1

1

0

0

ββααααβ

6

2

2

0

0

0

0

0

 

0

0

0

0

0

0

131

αααβββα

1

–1

–1

0

0

1

–1

0

0

0

–1

0

1

0

ααβαββα

1

–1

–1

0

0

–1

1

0

0

0

1

0

1

0

αβααββα

1

–1

1

0

0

0

0

1

1

0

0

–1

–1

0

βαααββα

1

–1

1

0

0

0

0

–1

–1

0

0

1

–1

0

ααββαβα

–4

0

0

0

0

0

0

1

–1

–1

0

0

–1

0

αβαβαβα

1

1

0

–1

0

–1

0

–1

0

0

0

0

0

1

βααβαβα

1

1

0

0

–1

0

1

0

1

0

0

0

0

–1

αββααβα

1

1

0

0

1

1

0

–1

0

0

0

0

0

–1

βαβααβα

1

1

0

1

0

0

–1

0

1

0

0

0

0

1

ββαααβα

–4

0

0

0

0

0

0

1

–1

1

0

0

1

0

ααβββαα

–4

0

0

0

0

0

0

–1

1

1

0

0

–1

0

αβαββαα

1

1

0

1

0

–1

0

0

–1

0

0

0

0

–1

βααββαα

1

1

0

0

1

0

1

1

0

0

0

0

0

1

αββαβαα

1

1

0

0

–1

1

0

0

–1

0

0

0

0

1

βαβαβαα

1

1

0

–1

0

0

–1

1

0

0

0

0

0

–1

ββααβαα

–4

0

0

0

0

0

0

–1

1

–1

0

0

1

0

αβββααα

1

–1

1

0

0

0

0

1

1

0

0

1

1

0

βαββααα

1

–1

1

0

0

0

0

–1

–1

0

0

–1

1

0

ββαβααα

1

–1

–1

0

0

1

–1

0

0

0

1

0

–1

0

βββαααα

1

–1

–1

0

0

–1

1

0

0

0

–1

0

–1

0

Occupation numbers of one-particle states for electrons are equal to 0 or 1. Therefore the computer code is ideally suitable to record vectors of type (262). The first eigenvalues and corresponding eigenvectors of the CI matrix were computed by an algorithm proposed by Nesbet [25]. As an initial approximation for the diagonalization of the next matrix we used the eigenvector of the previous matrix of lower order.

2.7.3.7.2. Discussion of Results

The energy of the ground state of the benzyl radical computed with different configurational sets is given in Table 10. The difference between the energy corresponding to full CI and the energy obtained in the single-configuration approximation will be called the correlation energy for a given model Hamiltonian. It is seen from Table 10 that the correlation energy in our case is equal to –0.929722 eV. With the singly excited configurations only 18% of this energy is taken into account. Extension of the basis to include doubly excited configurations leads to an account of almost all the correlation energy, namely 94%. Analogous changes occur with the overlap integral S = ΨF Ψtri which may be taken as a measure of the

132

accuracy of the trial wave function. The deviation from unity of the projection of the approximate wave function on the exact one is 0.0547 for the single-configuration function and is 0.0334 when all singly excited configurations are included. When all doubly excited configurations are included this deviation decreases sharply to 0.0020 which indicative of the marked improvement of the wave function.

Table 10

Change in energy E of the ground state of the benzyl radical and of the overlap integrals S between its exact and approximate wave functions

as the configurational set is extending

Configurational set

E, eV

S

G

0.929722

0.945313

I

0.760009

0.966577

II

0.058437

0.997981

III

0.021089

0.999471

IV

0.000394

0.999994

V

0.000082

0.999999

F

0*

1

* Energy of the benzyl radical computed with full CI was taken as zero and for parametrical Hamiltonian (257) was equal to –211.756817 eV.

Computations shows that the electron density on the atoms of benzyl is always equal to one if all configurations of a given order of excitation are taken into account. Otherwise, the distribution of electronic density is non-uniform.

Bond orders

Pµν (Table 11) are often used

to calculate bond lengths

Rµν .

Remembering that

for conjugated hydrocarbons

R 0.18 P ([26], see

also

Appendix П-7) and using the data of Table 11 one sees that in order to calculate bond lengths with the appropriate accuracy of order 5·10–4 Å bond orders must be computed with a wave function which includes at least singly excited configurations. In the case of the single-configuration approximation the error in the calculation of Rµν caused by the omission of higher excited configurations can reach a value of

2·10–2 Å. Table 12 shows the changes of the elements ρµν of the spin density matrix

for benzyl as the wave function is improved.

The largest deviation of atomic spin density computed with approximate wave functions from its exact value is 0.0185 (C7), 0.0173 (C2), and 0.0023 (C7) for configurational sets I, II, and III respectively. Using the McConnell relation [21, 22, 27] one can estimate the errors in the calculation of proton splitting caused by inaccurate computation of the wave function. If only singly and even doubly excited configurations are taken into account then one cannot hope to obtain splitting

133

with an accuracy more than 0.5 Oe. Inclusion of triply excited configurations permits a lowering of this error by one order. Thus, our results do not confirmed the widely held opinion that in computing the electronic structure of radicals it is sufficient to account only for singly excited configurations [2, 18].

Table 11

Bond orders Pµν in the ground state of the benzyl radical computed with different configurational sets*

µν

 

 

Configurational set

 

 

G

I

II

III

IV

V

F

 

12

0.6002

0.5565

0.5471

0.5378

0.5366

0.5365

0.536474

14

–0.2982

–0.2609

–0.2479

–0.2396

–0.2380

–0.2379

–0.237940

17

0.4367

0.5226

0.5051

0.5202

0.5189

0.5191

0.519078

23

0.6793

0.6890

0.6661

0.6643

0.6622

0.6621

0.662104

25

–0.3207

–0.3034

–0.2777

–0.2717

–0.2695

–0.2694

–0.269413

34

0.6587

0.6441

0.6249

0.6206

0.6186

0.6185

0.618519

37

–0.0431

–0.0686

–0.0628

–0.0655

–0.0650

–0.0650

–0.065006

*Bond orders of the remaining bonds are strictly equal to zero or coincide with those given in the Table by symmetry conditions. Electronic densities on atoms Pµν are always strictly equal to one.

The spin density on the ortho-atom C2 is larger than on the para-atom C4 even in the case of full CI. The difference between them is only slightly changed if the wave function is constructed from only singly excited configurations, and in the latter case does not depend essentially on the choice of the semi-empirical values of integrals [28]. The difference between the splitting on ortho- and para-protons calculated by the simple McConnell relation is about +0.5 Oe whereas its experimental value is equal to about –1 Oe. This would suggest that the simple McConnell relation might lead to an error in the calculation of the splitting of not less than 1.5 Oe. Therefore, one must be especially careful calculating ESR splitting by the simple McConnell relation from spin densities computed by traditional methods if the differences between the splittings are small. This procedure is justified if the above differences are larger than at least 2 Oe.

In conclusion we shall consider properties of the natural spin-orbitals of the benzyl radical. In accordance with definition (Appendix П-4, § 2.9.7) they are eigenfunctions of the one-particle density matrices. Natural spin-orbitals for the benzyl radical obtained with full CI are collected in Table 13.

The expansion coefficients for the spin β are determined from the alternant properties of the benzyl radical so that orbital 8 – i for spin β is complementary with the ith orbital for spin α. The corresponding occupation numbers computed as

134

eigenvalues of the one-particle density matrices constructed from the wave functions of different accuracy are given in Table 14.

Table 12 Elements ρµν of the spin density matrix for the ground state of the benzyl radical

computed with different configurational sets*

µν

 

 

Configurational set

 

 

G

I

II

III

IV

V

F

 

11

0

–0.0945

–0.1005

–0.1104

–0.1115

–0.1116

–0.111604

22

0.0755

0.1740

0.1653

0.1829

0.1824

0.1826

0.182622

33

0

–0.0576

–0.0581

–0.0692

–0.0694

–0.0696

–0.069598

44

0.0434

0.1557

0.1455

0.1610

0.1610

0.1612

0.161167

77

0.8056

0.7059

0.7408

0.7221

0.7246

0.7244

0.724388

13

0

0.0171

0.0192

0.0200

0.0201

0.0200

0.020049

24

–0.0572

–0.1108

–0.0973

–0.1020

–0.1010

–0.1010

–0.100982

26

0.0755

0.0991

0.0817

0.0814

0.0807

0.0807

0.080684

27

–0.2466

–0.2318

–0.2211

–0.2190

–0.2179

–0.2178

–0.217827

35

0

0.0071

0.0085

0.0110

0.0108

0.0108

0.010753

47

0.1870

0.1904

0.1717

0.1703

0.1686

0.1686

0.168572

*The remaining elements are strictly equal to zero or coincide with those given in the Table by symmetry conditions.

As can be seen the occupation numbers for different spins are noticeably different even for anti-bonding and bonding orbitals which originally were equally filled. One can also see from Table 14 that inclusion of singly excited configurations affects the occupation numbers noticeably only for spin β.

More detailed information about our full CI computations including computer program in ALGOL may be found in [29].

135

Table 13

Expansion coefficients for the natural spin-orbitals computed for the ground state of benzyl radical with full CI*

µ

1

2

3

4

5

6

7

i

 

 

 

Spin α

 

 

 

7 (5b2)

0.44541

–0.38192

0.40596

–0.39168

0.40596

–0.38192

–0.16387

6 (4b2)

–0.60579

0.18183

0.32022

–0.51187

0.32022

0.18183

0.31592

5 (2a2)

0

0.47503

–0.52378

0

0.52378

–0.47503

0

4 (3b2)

–0.31142

–0.41273

0.14130

0.54507

0.14130

–0.41273

0.47464

3 (1a2)

0

–0.52378

–0.47503

0

0.47503

0.52378

0

2 (2b2)

0.17435

–0.19572

–0.40028

–0.49076

–0.40028

–0.19572

0.57593

1 (1b2)

0.55430

0.33529

0.22904

0.21593

0.22904

0.33529

0.56246

i

 

 

 

Spin β

 

 

 

7 (5b2)

–0.55430

0.33529

–0.22904

0.21593

–0.22904

0.33529

0.56246

6 (4b2)

–0.17435

–0.19572

0.40028

–0.49076

0.40028

–0.19572

0.57593

5 (2a2)

0

–0.52378

0.47503

0

–0.47503

0.52378

0

4 (3b2)

0.31142

–0.41273

–0.14130

0.54507

–0.14130

–0.41273

0.47464

3 (1a2)

0

–0.47503

–0.52378

0

0.52378

0.47503

0

2 (2b2)

–0.60679

–0.18183

0.32022

0.51187

0.32022

–0.18183

–0.31592

1 (1b2)

0.44541

0.38192

0.40596

0.39168

0.40596

0.38192

0.16387

*All expansion coefficients are given without taken into account symmetry properties of the benzyl.

Table 14 Occupation numbers of the natural spin-orbitals for the ground state of the benzyl

radical computed with different sets of configurations*

i

1

 

 

2

 

3

 

4

Conf .

nα

nβ

nα

nβ

nα

nβ

nα

nβ

G

1

1

1

1

1

1

1

0

I

1.0000

0.9982

0.9999

0.9948

0.9999

0.9844

0.9775

0.0225

II

0.9950

0.9904

0.9902

0.9692

0.9776

0.9685

0.9652

0.0348

III

0.9943

0.9892

0.9887

0.9652

0.9755

0.9649

0.9607

0.0393

IV

0.9940

0.9884

0.9882

0.9634

0.9734

0.9627

0.9588

0.0412

F

0.99400

0.98840

0.98815

0.96331

0.97338

0.96259

0.95876

0.04124

*For other orbitals the occupation numbers are determined by the alternant properties of the benzyl radical, namely: nα(β ),8i =1nα(β ),i (i 4).

136

1,3Pµν

2.7.3.8. Determinantal Method to Derive the Electron Density – Bond Order Matrix and the Spin Density with an Account of All Doubly Excited Configurations for Molecular States

The inclusion of more than singly excited configurations leads to a closer description of reactivity, geometry, and other properties of molecules in the ground and excited states. The knowledge of the distribution of the electron density Pµµ , the

spin density ρµµ , and the bond orders Pµν computed with an account of doubly

excited configurations is important.

It is not difficult to find in quantum chemistry literature computations when wrong or better to say non-complete formulae for electron distributions mentioned above are used. For example, formula for 1Pµν used in [30] is valid only for the case

of mixing of some particular doubly excited configurations, namely those of the types

1Φik

and 1Φik , and of the ground state configuration 1Φ0 . Here the occupied MO’s

ik

jl

of the ground state of a molecule are designated by i and j, and the unoccupied – by k and l. The single-configurational wave function of the ground state of a molecule with 2n electrons is

1Φ0 = (11...ii ... j j...nn)

or for the brevity just 1Φ0 =| ii ... j j |. An identical wrong formula was erroneously used in [31 – 34] where singly and/or doubly excited configurations of arbitrary types have been included. The correct formulae for 1,3Pµν and ρµµ with the inclusion of only

singly excited configurations can be found in [9] where also is mentioned that the use of the widely-spread simple formula [30 – 34] for mixing of configurations of arbitrary types leads to an even qualitatively incorrect electron density distribution, especially for the states of different multiplicity. This appendix summarizes the derivation of the general expressions for of the ground and excited singlet and

triplet molecular states and for ρµµ of the triplet states by the determinantal method in

the frame of the CI method including all singly and all doubly excited configurations [21].

2.7.3.8.1. The Wave Functions

The multi-configurational wave functions for the singlet and triplet states are

1Ψ = 1X0

1Φ0 +1Xik 1Φik +1Xik 1Φik +1Xik

1Φik +

 

 

 

 

 

 

 

 

 

 

ik

ik

 

jk

jk

+

1X

ik

1Φ

ik

+

1X

1Φ′

+

1X ′′

1Φ′′

,

 

 

 

 

 

ik

ik

 

ik

ik

 

 

 

 

 

il

 

il

 

 

jl

jl

 

 

jl

jl

 

 

137

3Ψ = 3Xik

3Φik +3Xik

3Φik

+3Xik

3Φik +

 

 

 

 

jk

jk

 

il

il

 

+

3X

3Φ′

+

3X ′′

3Φ′′

+

3X ′′′

3Φ′′′

,

 

ik

ik

 

ik

ik

 

ik

ik

 

 

 

jl

jl

 

 

jl

jl

 

 

jl

jl

 

where here and in the following equations the summation indexes over MO’s are omitted supposing that they run independently over all possible values, and

1

Φik

=

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Φik

 

 

 

 

 

 

 

 

 

 

 

 

1Φik =

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(|ik

 

j

j

 

| |

i

k j

 

 

j

|),

=| kk j

j

|,

 

 

(|ik

 

 

j

k | + |

i

k jk |),

 

 

 

 

 

 

 

 

2

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Φ

 

=

1

 

(| k

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1Φ′

 

= 1 (|ik

 

 

 

 

l | +

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l

 

| + | lk

j

 

 

 

|),

 

k jl

 

| |ik

 

 

l | |

 

k jl |),

ik

 

j

 

j

 

j

i

j

i

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

Φ′′

=

1

 

 

 

 

 

 

 

 

 

l | + |

 

 

 

 

 

 

| + |ik

 

 

 

 

| + |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(|ik

k jl

l

k

jl | 2 |ik

 

jl

| 2 |

 

 

k

 

l |),

 

 

 

j

i

j

i

i

j

 

 

 

 

 

 

 

ik

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3Φ

 

=|ik j

 

|,

 

 

 

 

3Φ

 

 

 

 

 

 

 

 

jk |,

3Φ

 

 

 

=| kl j

 

 

|,

3Φ′

=

1

(|

 

 

 

 

 

 

 

|),

 

 

 

 

 

 

 

 

 

 

 

 

=|ik

 

 

 

k jl | |ik jl

ik

j

 

 

 

 

ik

 

ik

 

j

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3Φ′′

=

1

 

(|

 

 

 

| 2 |ik

 

l |), 3Φ′′′

=

 

 

 

1

(|

 

 

 

| + |ik

 

 

 

 

 

 

 

k jl | + |ik jl

 

 

 

k jl | + |ik jl

l | 3|ik

jl |).

 

i

j

 

 

 

i

j

 

 

 

 

 

 

 

 

 

 

ik

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

 

 

 

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.7.3.8.2. The Expectation Value of a One-electron Operator

Let the one-electron operator be given

 

ˆ

 

 

ˆ

 

 

 

 

 

 

Q =

Q(t) .

 

 

 

 

t

 

 

 

 

 

 

 

 

 

 

 

There should be found its average values

 

 

 

 

 

 

 

 

 

 

 

 

 

1

ˆ

1

Ψ

 

ˆ

 

1

Ψ

 

 

 

 

 

 

 

Q =

 

 

 

Q

 

 

 

 

and

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

ˆ

3

Ψ

 

 

ˆ

 

 

3

Ψ .

 

 

 

 

 

 

Q =

 

Q

 

 

 

 

 

In order to calculate the matrix elements of

ˆ

on the determinantal functions

Q

contained in 1 Ψ and 3 Ψ one may use the known expansion [1]

U Qˆ V = ur Qˆ vs D(r | s),

rs

where

U = (u1u2u3...uN ), V = (v1v2v3...vN ),

and D(r | s) is a minor of the determinant D = U |V , received by crossing in D the column r and the row s . Tedious calculations lead to the following expressions for 1 Qˆ through the matrix elements of Qˆ in the MO representation and for 3 Qˆ in the spin-MO representations:

138

1 Qˆ

3 Qˆ

n

 

 

 

 

 

 

 

= 2Qii + 1 Xik 1 Xi′→k(QkkδiiQiiδkk) + 21 Xi2k (Qkk Qii ) +

 

i=1

 

 

 

 

 

ik

 

+ 1 Xik

1 Xi′→k (2Qkkδiiδ jjQiiδ jjQjjδii) +

 

 

 

jk

 

j′→k

 

 

 

 

+ 1 Xik 1 Xik(2Qiiδkkδll+Qllδkk+Qkkδll) +

 

 

 

il

 

il

 

 

 

 

 

 

1 Xik

1 Xi′→k+

1 Xi′′k

 

 

 

+

1 Xi′′′→k(Qkkδiiδ jjδll+Qllδiiδ jjδkkQiiδ jjδkkδllQjjδiiδkkδll) +

 

 

jl

j′→l

jl

j′→l

 

 

 

 

 

 

 

 

 

1 Xik Qjk + 21 Xik

1 XikQil

 

 

 

 

 

+ 2 21 Xik 1 X0

+ 1 Xik Qik 21 Xik

 

 

 

 

 

ik

jk

il

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Xik +

 

 

 

31 Xi′′k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Xik 1 Xik

 

+ 1 Xik 1 Xik

 

 

 

 

 

21 Xik

 

 

 

Qjl + 2 2

 

Qij +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

 

 

jk

 

 

 

il

j

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 Xik 1 Xik + 1 Xik

1 Xik

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 2 2

Qkl ,

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ik

 

i

l

 

 

 

 

 

 

 

 

 

jk

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= (Qii +Q

 

 

 

 

 

) + 3 Xik

3 Xi′→k(Qk kδiiQiiδk k) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 3 Xi

k

3 Xi′→k [(Qk k +Q

 

 

 

 

 

)δiiδ j jQ

 

 

iδ j jQ

 

 

jδii] +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

k

i

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

 

 

 

 

 

j′→k

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 3 Xi

k

3 Xi

k[(Qii +Q

 

 

 

 

)δk kδl l+Qk kδl l+Ql lδk k] +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

l

 

 

 

 

 

 

i

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 3 Xik

3 Xi′→k

[Qk kδiiδ j jδl lQ

 

 

jδiiδk kδl l+

1

(Ql l+Q

 

 

l)δiiδ j jδk k

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

j

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

j′→l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

(Ql l+Q

 

 

l)δiiδ j jδk k] + 1

3 Xi′′k

3 Xi′′′→k[6Qk kδiiδ j jδl l+ (5Ql l+Q

 

l)δiiδ j jδl l

2

l

 

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

jl

 

 

 

 

 

j′→l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

3

 

 

′′′ 3

 

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4Qj j

+ 2Qj

 

j)δiiδk kδl l

(Qii

+5Qi i)δ j jδk kδl l]

+

12

 

 

 

 

Xik

Xi′→k

[(3Qk k+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

l

 

j′→l

 

 

 

 

 

 

 

 

 

+ 9Q

 

 

 

 

)δiiδ j jδl l

+ (11Ql l

+Q

 

 

l)δiiδ j jδk k

(Qii+11Q

 

 

 

i)δ j jδk kδl l

 

 

 

 

 

 

 

 

 

k

k

l

i

 

 

 

 

 

 

 

 

 

(11Q

 

 

j+Qj j)δiiδk kδl l] 23 Xik

3 Xik

Q

 

 

 

23 Xik

3 XikQil

 

 

 

 

 

 

 

 

j

k

 

 

 

 

 

 

 

 

 

j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

3

 

 

 

 

′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

3

 

′′′

 

 

 

 

 

2

Xik

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

XikQj l

+

3

 

Xik

 

 

Xik

(2Qjl +Qj l

) +

 

 

 

 

3

 

Xik

 

Xik

(Qj l Qjl ) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

3

 

 

 

 

 

 

 

 

1

3

 

 

 

 

′′

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

3

 

 

 

 

3

 

 

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xi

k

 

 

 

Xik

 

 

 

 

3

 

 

 

 

Xik

Qk l

 

3

 

 

Xik

Xik

(3Qk l

+Qk l ) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

 

 

j

l

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jk

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

3

 

 

 

 

 

 

 

3

 

 

 

 

′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

3

 

′′′

 

 

 

 

 

+ 2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Xi

k

 

 

XikQi j

+

3

 

Xik

 

 

Xik

(Qi j + 2Qi j ) +

 

 

 

 

3

 

Xik

 

Xik

(Qi j Qi j ) +

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

l

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il

 

 

 

 

 

 

j

l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

il

 

 

 

jl

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

1

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

[(Ql lQl l)δii+ (Qi iQii)δl l] +

 

 

 

 

 

 

 

 

 

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

 

 

 

jl

 

 

 

 

2

 

 

 

 

jl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+

2

 

Xik

Xi′→k [(Ql lQl l)δiiδ j j+ (Qi iQii)δ j jδl l+ 2(Qj jQj j)δiiδl l].

(265)

 

 

 

3

′′ 3

′′′

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

jl

j′→l

 

139

Соседние файлы в предмете Квантовая химия