Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции по МСС / ALLmetrology.doc
Скачиваний:
360
Добавлен:
27.01.2014
Размер:
6.53 Mб
Скачать

3.6. Погрешности косвенных измерений

Анализ погрешностей косвенных измерений в большинстве случаев заключается в расчете числовых характеристик погрешности определения измеряемой величины по заданным характеристикам погрешностей измерений аргументов.

Если известны истинные значения аргументов , то истинное значение величины, измеряемой косвенным методом, будет:

(3.34)

но результаты прямых измерений известны с погрешностями:

значит

если

(погрешности малы),

то разложим (3.35) в ряд Тейлора:

(3.36)

систематическая погрешность:

т.к. - систематическая плюс случайная составляющие,

то

; ;;(3.37)

В линейном случае, когда - линейная функция:

(3.38)

Нелинейная поправка:

(3.39)

зависит не только от систематических погрешностей аргументов, но и их случайных погрешностей. В случае малых погрешностей измерений поправку можно не учитывать.

Для оценки случайной погрешностей измерений необходимо вычесть (3.37) из (3.36) и пренебречь членами, содержащими квадраты погрешностей:

Возводим это равенство в квадрат, и находя математическое ожидание от его обеих частей, имеем:

Тогда:

(3.40)

Для независимых погрешностей :

(3.41)

Частные случаи:

, =>

;

- относительные систематические погрешности;

Пример 1.По результатам прямых измерений емкостииопределена емкость. Найти погрешности её измерения, если заданы,,,,. Согласно (3.38) и (3.41) систематическая и случайная погрешности будут:

Вводится поправка, для направления результата:

Для доверительной вероятности ,:

, =>

СКО:

, при .

В нашем примере ,!

Рассмотрите случай, когдаr12=1?

Пример 2.По результатам измерения напряженияи сопротивлениекосвенным методом измерена мощность. Определить погрешности её измерения, если,.

По формулам для произведения:

Относительно СКО:

Мощность ;

; ;;

Результат измерений:

Вероятностное описание погрешностей измерения

В измерительной технике имеют дело с большим количеством массовых явлений. Сюда относится множество измерений, проводимых с помощью одного и того же средства измерений (СИ), характеристики множества СИ одинакового типа и т.д. При этом мы встречаемся как со случайными событиями (отказы СИ, правильные и неправильные решения при контроле, наличие грубых промахов), так и со случайными величинами (погрешности измерения, время безотказной работы, значение контролируемого параметра) и случайными процессами (флуктуации питающих напряжений, тепловые и дробовые шумы электронных устройств). В силу этого аппарат теории вероятностей оказывается наиболее адекватным сути многих задач измерительной техники.

1. Случайные события и их вероятности

Понятие о случайном событии является одним из исходных в теории ве­роятностей (ТВ). Некоторое событие называется случайным, если при выполнении определенных, заранее оговоренных условий оно может произойти или не произойти. Примеры: выигрыш в лотерее (заранее оговоренные условия: необходимо сначала купить лотерейный билет, а потом выигрыш может быть, а может – нет), бросание игральной кости и т.д. В измерительных задачах: пребывание погрешности измерения в определенном интервале, различные ошибки контроля.

Антиподами случайного события являются детерминированные события, которые включают в себя достоверные и невозможные события. (Придумайте примеры самостоятельно).

Достоверным событием называется такое, которое обязательно произойдет при выполнении некоторого комплекса условий. Событиеназываетсяневозможным, если при заранее оговоренных условиях оно не может произойти. (Придумайте примеры самостоятельно).

Существует два подхода к определению вероятности случайного события: статистический и классический.

Статистическое определение вероятности. Пусть при одинаковых условиях проводится серия независимых испытаний, и вопытах произошло случайное событие. В результате многократных наблюдений экспериментально установлен закон, заключающийся в том, что относительная частота появления события

(1.1)

незначительно изменяется от серии к серии. Причем это отличие с среднем уменьшается с ростом . Такой эмпирический закон положен в основу статистического определения вероятности.

Вероятностью события называется число , вокруг которого группируются значения относительной частоты появления этого события.

Недостаток этого определения состоит в том, что оно не указывает, каким способом найти это число . Практически при экспериментальном определении вероятности предполагают, что

. (1.2)

Поскольку с ростом числа опытов разбросуменьшается, напрашивается более строгое определение вероятности как предела

.

Но в этом случае предел в том смысле, как его понимают в математическом анализе, не существует. Подробнее об этом можно прочитать у Гнеденко.

Классическое определение вероятности. Оно более строгое с математической точки зрения.

Пусть в результате эксперимента обязательно происходит одно и только одно из равновозможных событий , а к событиюприводят толькособытий из.Тогда вероятностью события называется отношение

. (1.3)

Пример 1. Пусть бросается игральная кость, а событие заключается в том, что цифра на верхней грани делится на. Найти.

,, из (1.3).

Существует ещё более строгое аксиоматическое определение, данное академиком Колмогоровым, но оно здесь не приводится, поскольку подразумевает знание изучающим теорию вероятностей основ функционального анализа.

Поскольку строгое определение вероятности затрудняет его практическое применение из-за сложности определения равновозможных исходов, то в прикладных задачах, как правило, пользуются в неявном виде статистическим определением.

Из всех определений вероятности следует:

;;.

Вероятность произведения случайных событий. Событие , заключающееся в появлении в одном эксперименте одновременно всех событий, называетсяпроизведением этих событий:

.

Пример со стрельбой биатлониста. Биатлонист подъехал к огневому рубежу. Допустим, что событие Ai заключается в том, что биатлонист своим i-м выстрелом разобьёт i-ю тарелочку. А событие B заключается в том, что с огневого рубежа биатлонист уйдёт без штрафа (разобьёт все тарелочки). В этом случае событие B произойдёт только тогда, когда одновременно произойдут все события . При этом, если говорить о вероятностях поражения биатлонистом мишеней, то при стрельбе поi-й мишени будет рассматриваться вероятность её поражения при условии, что все предыдущие мишени были поражены.

Поэтому в ТВ рассматривают условные вероятности. Вероятность появления события при условии, что событиеуже произошло, называется условной вероятностью и обозначается. Вероятность событияв случае, когда, равна

. (1.4)

Если же события независимы друг от друга, то есть вероятность наступления любого из них никак не зависит от появления или «непоявления» остальных, то формула (1.4) упрощается:

. (1.5)

А в общем случае формулы (1.4), (1.5) примут вид:

, (1.6)

. (1.7)

Вероятность суммы случайных несовместных событий. Событие , заключающееся в появлении хотя бы одного из событий , называетсясуммой этих событий:

.

События называются попарно несовместными, если в каждом опыте не могут произойти одновременно любые два из них.

Можно показать, что в этом случае

. (1.8)

Попарно несовместные события образуют полную группу, если в результате эксперимента обязательно происходит одно из них, то есть

;,

тогда

. (1.9)

Событие называется противоположным, еслииобразуют полную группу событий.

. (1.10)