
- •Нина Александровна Дашко
- •Часть 1
- •1. ВВЕДЕНИЕ
- •1.1. Состав и строение атмосферы
- •1.2. История развития метеорологии как физической науки
- •1.2.1. Древнегреческий период развития науки
- •1.2.2. Эллинистический период развития науки
- •1.2.3. Простонародная метеорология
- •1.2.4. Развитие науки на Востоке
- •1.2.5. Развитие научных связей Европы и Востока
- •1.2.6. Изобретение метеорологических приборов
- •1.2.6. Научные общества и академии
- •1.3. Развитие синоптической метеорологии
- •1.4. ВМО – Всемирная метеорологическая организация
- •1.5. Гидрометеорологическая служба России
- •2. МЕТЕОРОЛОГИЧЕСКАЯ ИНФОРМАЦИЯ
- •2.1. Требования к гидрометеорологической информации
- •2.2. Виды гидрометеорологической продукции
- •2.3. Потребители гидрометеорологической информации:
- •2.4. Кодирование гидрометеорологической информации
- •2.4.1. Структура кода КН-01
- •Схема кода КН-01:
- •Раздел 0
- •Раздел 1
- •Раздел 2 – для судовых или буйковых станций
- •Раздел 3
- •Раздел 4
- •Раздел 5
- •Раздел 0
- •Для сухопутных станций:
- •Передача судовых данных:
- •Раздел 1 (для станций любого типа)
- •Раздел 2 (используется при передаче судовых данных)
- •Раздел 3
- •Раздел 4 (для высокогорных станций)
- •Раздел 5
- •2.4.2. Структура кода КН-04
- •ЧАСТЬ "A" КОДА КН-04
- •ЧАСТЬ "B" КОДА КН-04
- •Особые точки по температуре воздуха:
- •Особые точки по ветру:
- •3. СОСТАВЛЕНИЕ КАРТ ПОГОДЫ
- •3.1. Виды карт погоды
- •3.2. Приземные карты погоды (составление и чтение)
- •Раздел 1
- •Раздел 2
- •Раздел 3
- •3.3. Составление высотных карт погоды
- •3.3.1. Геопотенциал
- •3.3.2. Барометрическая формула геопотенциала
- •3.3.3. Барометрическая ступень
- •3.3.4. Карты барической топографии
- •3.4. Составление вспомогательных карт погоды
- •4. АНАЛИЗ КАРТ ПОГОДЫ
- •4.1. Первичный анализ приземных карт погоды
- •4.1.1. Правила оформления приземной карты погоды
- •4.1.2. Проведение атмосферных фронтов на картах погоды
- •4.2. Первичный анализ высотных карт погоды
- •4.2.1.Правила оформления высотных карт погоды
- •4.2.3. Анализ карт относительной топографии
- •4.3. Анализ вспомогательных карт погоды
- •5. АЭРОЛОГИЧЕСКИЕ ДИАГРАММЫ И ВЕРТИКАЛЬНЫЕ РАЗРЕЗЫ АТМОСФЕРЫ
- •5.1. Аэрологические диаграммы
- •5.1.2. Построение аэрологической диаграммы
- •5.1.3. Анализ аэрологической диаграммы
- •5.1.4. Графические расчёты с помощью аэрологических диаграмм
- •5.2. Вертикальные разрезы атмосферы
- •5.2.1. Правила построения вертикальных разрезов атмосферы
- •5.2.2. Анализ вертикальных разрезов атмосферы
- •5.2.3. Временные разрезы атмосферы
- •Температура воздуха, °С
- •6. ОШИБОЧНЫЕ ДАННЫЕ НА КАРТАХ ПОГОДЫ
- •7. ПРИНЦИПЫ СИНОПТИЧЕСКОГО АНАЛИЗА
- •7.1. Основные синоптические объекты
- •7.2. Информативность карт барической топографии
- •7.4. Обзор синоптического положения за предыдущие сутки
- •8.1. Вычисление производных
- •8.2.1. Прямолинейная интерполяция
- •8.2.2. Криволинейная интерполяция
- •8.2.3. Формальная экстраполяция
- •8.3.1. Траектории воздушных частиц
- •Способ обратного переноса:
- •Рис. 8.4. Способ обратного переноса
- •Способ прямого переноса:
- •8.3.2. Линии тока воздушных частиц
- •9. ОСНОВНЫЕ ХАРАКТЕРИСТИКИ ПОЛЕЙ МЕТЕОРОЛОГИЧЕСКИХ ВЕЛИЧИН
- •9.1.1. Градиент метеорологической величины
- •9.2. Поле атмосферного давления
- •9.2.3. Локальные изменения давления
- •9.3. Динамические изменения давления воздуха
- •9.4. Распределение атмосферного давления на Земном шаре
- •9.5. Поле ветра
- •Цилиндрическая система координат
- •Сферическая система координат
- •Натуральная система координат
- •9.5.2. Силы, действующие в атмосфере
- •Сила барического градиента
- •Отклоняющая сила вращения Земли
- •Сила трения
- •Центробежная сила
- •9.6. Уравнения движения
- •9.6.1. Геострофический ветер
- •9.6.3. Градиентный ветер
- •9.6.4. Действительный ветер
- •9.7. Особенности ветрового режима над Японским морем
- •9.8. Особенности ветрового режима над Охотским морем
- •9.9. Дивергенция и вихрь скорости
- •9.9.1 Дивергенция вектора скорости ветра
- •9.9.2. Вихрь вектора скорости ветра
- •9.9.3. Уравнение тенденции вихря скорости
- •Характерные синоптические масштабы:
- •9.9.5. Уравнение дивергенции скорости
- •9.10. Поле вертикальных движений атмосферы
- •9.10.1. Классификация вертикальных движений атмосферы
- •9.10.2. Упорядоченные вертикальные движения атмосферы
- •9.10.3. Расчёт вертикальных движений атмосферы
- •9.11. Поле температуры воздуха
- •9.11.1. Температурные градиенты
- •9.11.2. Адиабатические изменения температуры воздуха
- •9.11.3. Термический ветер
- •9.11.4. Локальные изменения температуры воздуха
- •10. ВОЗДУШНЫЕ МАССЫ
- •10.1. Масштабы воздушных масс
- •10.2. Очаги формирования воздушных масс
- •10.3. Географическая классификация воздушных масс
- •10.5. Трансформация воздушных масс
- •10.6. Термодинамическая классификация воздушных масс
- •10.7. Характеристики устойчивых воздушных масс
- •10.7.1. Тёплая устойчивая воздушная масса
- •10.7.2. Холодная устойчивая воздушная масса
- •10.8. Характеристики неустойчивых воздушных масс
- •10.8.1. Тёплая неустойчивая воздушная масса
- •10.8.2. Холодная неустойчивая воздушная масса
- •10.9. Оценка устойчивости воздушных масс
- •11. АТМОСФЕРНЫЕ ФРОНТЫ
- •11.1. Ориентация и размеры фронтальной поверхности
- •11.2. Классификация фронтов
- •11.2.1. Географическая классификация атмосферных фронтов
- •11.3. Перемещение фронтов
- •11.4. Профиль движущегося фронта
- •11.5. Общие характеристики фронтов
- •11.5.1. Фронты в барическом поле
- •11.5.2. Фронты в поле ветра
- •11.5.3. Фронты в поле барических тенденций
- •11.5.4. Фронты в поле температуры воздуха
- •11.5.5. Фронты в поле влажности и облачности
- •11.6. Тёплый фронт
- •11.7. Холодный фронт
- •11.7.1. Холодные фронты 1-го рода
- •11.7.2. Холодные фронты 2-го рода
- •11.7.3. Вторичные холодные фронты
- •11.8. Фронты окклюзии
- •11.8.1. Облака и осадки холодного фронта окклюзии
- •11.8.2. Облака и осадки тёплого фронта окклюзии
- •11.10. Образование и размывание атмосферных фронтов
- •11.10.3. Оценка тропосферного фронтогенеза и фронтолиза
- •11.10.4. Приземный фронтогенез и фронтолиз
- •12. ЦИКЛОНЫ И АНТИЦИКЛОНЫ УМЕРЕННЫХ ШИРОТ
- •12.1. Основные определения
- •12.1.1. Вертикальная протяжённость барических образований
- •12.1.2. Оси барических образований
- •12.1.3. Фронтальные и нефронтальные барические образования
- •Модель циклона по Ли
- •Модель циклона по Бьеркнесу и Сульбергу
- •Основные теории возникновения циклонов
- •Конвекционная теория циклонов
- •Механическая теория циклонов
- •Волновая теория циклонов
- •Дивергентная теория циклонов
- •12.2. Условия возникновения барических образований
- •12.3. Стадии развития циклонов
- •12.3.1. Начальная стадия развития циклона
- •12.3.2. Стадия молодого циклона
- •12.3.3. Стадия максимального развития циклона
- •12.3.4. Стадия окклюдирования циклона
- •12.3.5. След циклона
- •12.3.6. Серии циклонов
- •12.4. Стадии развития антициклонов
- •12.4.1. Начальная стадия развития антициклона
- •12.4.2. Стадия молодого антициклона
- •12.4.3. Стадия максимального развития антициклона
- •12.4.4. Стадия разрушения антициклона
- •12.5. Регенерация барических образований
- •12.5.1. Регенерация циклонов
- •12.5.2. Регенерация антициклонов
- •12.6. Перемещение барических образований
- •12.7. Центры действия атмосферы
- •Постоянные центры действия атмосферы:
- •Сезонные центры действия атмосферы:
- •12.7.1. Характеристика ЦДА Северо-Атлантического региона
- •Азорский антициклон
- •Исландская океаническая депрессия
- •12.7.2. Характеристика ЦДА Северной Америки
- •Канадский максимум
- •Калифорнийский минимум
- •12.7.3. Характеристика ЦДА Азиатско-Тихоокеанского региона
- •Азиатский антициклон
- •Алеутский минимум
- •Южноазиатская депрессия
- •Северотихоокеанский антициклон
- •Переходные зоны между центрами действия атмосферы
- •12.7.4. Летние синоптические процессы над Охотским морем
- •12.8. Погода в циклонах на разных стадиях развития
- •12.8.1. Погода в передней части молодого циклона
- •12.8.2. Погода в тёплом секторе молодого циклона
- •12.8.3. Погода в тыловой части молодого циклона
- •12.8.4. Погода в окклюдированном циклоне
- •12.9. Погода в антициклонах
- •12.9.1. Инверсии в антициклонах
- •12.9.2. Фронты в антициклоне
- •12.9.3. Погода в антициклоне
- •13. ВЛИЯНИЕ ОРОГРАФИИ НА АТМОСФЕРНЫЕ ПРОЦЕССЫ
- •13.1. Горные ветры
- •Бора
- •13.2. Облакообразование и осадки
- •13.3. Влияние орографии на атмосферные фронты
- •14. СТРУЙНЫЕ ТЕЧЕНИЯ
- •15. ПРОГНОЗ СИНОПТИЧЕСКОГО ПОЛОЖЕНИЯ
- •15.3. Прогноз эволюции барических образований
- •15.4. Прогноз возникновения новых барических образований
- •15.5. Прогноз перемещения и эволюции атмосферных фронтов
- •15.6. Расчёт давления в точках поля
- •15.6.1. Адвективный способ расчёта давления в точках поля
- •15.7. Оценка приземной прогностической карты
- •16.1. О прогнозе погоды в США и Японии
- •16.1.1. Служба погоды в США
- •16.1.2. Служба погоды в Японии
- •Примечание 1
- •Примечание 2
- •Примечание 3
- •17.1. Критерии определения объёма выборки
- •17.2. Определение свойств выборки
- •17.3. Законы распределения метеорологических величин
- •17.3.2. Нормальный закон распределения
- •17.4. Точность и достоверность оценок выборки
- •17.5. Анализ статистических характеристик
- •17.5.1. Исследование трендовой составляющей
- •17.5.3. Процентили
- •17.5.4. Приёмы аппроксимации
- •17.6.1. Выбор предикторов
- •17.6.2. Формирование обучающей выборки
- •17.6.3. Корреляционный анализ
- •17.6.5. Отбор информативных предикторов
- •17.7.1. Оценки свойств уравнений регрессии
- •17.7.2. Применение пошаговой процедуры расчета
- •17.7.3. Процедура отбора оптимальных уравнений
- •17.11. Статистическая оценка прогнозов
- •17.11.1. Количественные прогнозы
- •17.11.2. Альтернативные прогнозы
- •18.1. Прогноз температуры воздуха у поверхности Земли
- •18.1.1. Адвективные изменения температуры воздуха
- •18.1.2. Трансформационные изменения температуры воздуха
- •18.1.3. Суточный ход температуры воздуха
- •18.2. Прогноз влажности воздуха у поверхности Земли
- •СОДЕРЖАНИЕ
- •АТМОСФЕРНЫЕ ФРОНТЫ
- •СТРУЙНЫЕ ТЕЧЕНИЯ
7. Принципы синоптического анализа |
2 |
7.1. Основные синоптические объекты
По сути, прогноз погоды структурно состоит из 2-частей. Первая – это прогноз синоптического положения, и вторая – это на его основе прогноз собственно условий погоды, которые определяются данным синоптическим положением.
•Совокупность взаимно связанных синоптических объектов над некоторым районом Земного шара, определяющая здесь условия погоды, есть синоптическое положение
•Синоптический прогноз – это прогноз синоптического положения и условий погоды с помощью синоптического метода
•Синоптические объекты – это воздушные массы, атмосферные фронты, ци-
клоны, антициклоны, барические и термические ложбины и гребни, очаги тепла и холода, струйные течения, высотные фронтальные зоны и т.д.
Определения основных синоптических объектов:
•Воздушные массы – относительно однородные по условиям погоды массы воздуха
втропосфере, соизмеримые по площади с материками и океанами, перемещающиеся в системе Общей циркуляции атмосферы (т.е. в системе макромасштабных воздушных течений над Земным шаром).
Общность свойств воздушных масс определяется их формированием в определённом очаге над однородной подстилающей поверхностью и в однородных радиационных условиях. При формировании воздушной массы должны осуществляться такие циркуляционные условия, которые способствуют стационированию её в данном очаге. При выходе из очага воздушная масса, перемещаясь, изменяет свои свойства (трансформируется), но при этом внутри воздушной массы сохраняется непрерывность в изменении температуры и другие свойства в горизонтальном направлении. Свойства воздушных масс в большой степени определяют режим погоды над занимаемой территорией, со сменой воздушных масс во внетропических широтах связаны непериодические изменения погоды.
По географической классификации, в зависимости от широтных зон, где образуют-
ся воздушные массы, различают арктические и антарктические воздушные массы (АВ), воздушные массы умеренных широт (УВ) или полярные воздушные массы (ПВ), тропиче-
ские (ТВ) и экваториальные (ЭВ) воздушные массы. Эти воздушные массы разделяются, кроме того, на морские и континентальные (за исключением экваториального воздуха,
Н.А. Дашко Курс лекций по синоптической метеорологии
7. Принципы синоптического анализа |
3 |
который является морским) – например, континентальный умеренный воздух, морской умеренный воздух (кУВ и мУВ, соответственно).
В зависимости от тепловых характеристик воздушные массы подразделяют на тёплые, холодные и нейтральные (местные), которые, в свою очередь могут характеризоваться как неустойчивым, так и устойчивым равновесием. Данное разделение воздушных масс учитывает один из важнейших результатов теплового обмена – вертикальное распределение температуры воздуха и соответствующий ему вид вертикального равновесия. С устойчивыми и неустойчивыми воздушными массами связаны определённые условия погоды.
•Атмосферные фронты. Фронт является наиболее сложным из синоптических объектов. При соприкосновении двух воздушных масс, обладающих различными свойствами (например, одна из них является тёплой, другая – холодной), в атмосфере между ними возникает переходная зона, являющаяся довольно узкой, по сравнению с масштабом воздушных масс, которые она разделяет. Эта переходная зона, которую в трёхмерном пространстве условно можно рассматривать, как поверхность раздела в атмосфере, называется фронтальной поверхностью и отличается сложным ходом метеорологических величин.
Давление по обе стороны фронтальной поверхности одинаково, но градиенты давления, как и другие метеорологические величины, испытывают разрыв. Непрерывность давления накладывает отпечаток на пространственную ориентацию фронтальной поверхности. Фронтальные поверхности располагаются под углом к линии горизонта, причем более холодный воздух подтекает клином под более тёплый, который располагается над ним. Протяженность фронтальной поверхности по вертикали ограничивается, как правило, вертикальной протяженностью тропосферы, т.е. около 10 км. А горизонтальная протяженность – это тысячи км, следовательно, наклон фронта очень мал.
Проекция фронтальной поверхности на плоскость на уровне моря, представленном приземной картой погоды, называется линией атмосферного фронта или просто атмосферным фронтом и имеет ширину не более 100 км.
Наиболее отчетливо переходные зоны прослеживаются на высотных картах, где их называют высотными фронтальными зонами (ВФЗ). Например, на высоте на 5 км (АТ500) ширина переходных зон около 1000 км. Обычно соседние высотные фронтальные зоны переходят одна в другую, образуя единую планетарную высотную фронтальную зону (ПВФЗ).
Н.А. Дашко Курс лекций по синоптической метеорологии

7. Принципы синоптического анализа |
4 |
Переход из одной воздушной массы в другую через фронтальную поверхность характеризуется здесь резким (скачкообразным) изменением метеорологических величин. В случае большого различия свойств воздушных масс атмосферные фронты между ними хорошо выражены (активные фронты) им соответствует широкая облачная полоса, состоящая из многослойной облачности, представляющей сочетание различных типов облаков. Длина атмосферного фронта может достигать нескольких тысяч км (рис. 7.1).
Рис. 7.1. Карта облачности за 6 июня 2002 г. Широкая непрерывная полоса облачности в северном полушарии над Тихим океаном соответствует активному полярному фронту, разделяющему морской умеренный и морской тропический воздух
(GMS5, Информацмя Японской погодной ассоциации)
Различают холодные, тёплые фронты, фронты окклюзии – по типу воздушной массы, которая смещается в данный район вместе с фронтом. Тёплый фронт движется в сторону холодной воздушной массы, после прохождения тёплого фронта в данный район приходит тёплая воздушная масса. Холодный фронт, наоборот, движется в сторону тёплой воздушной массы, после прохождения холодного фронта в данный район приходит холодная воздушная масса. Фронты окклюзии образуются на заключительной стадии разви-
Н.А. Дашко Курс лекций по синоптической метеорологии

7. Принципы синоптического анализа |
5 |
тия циклона в результате слияния тёплого и холодного атмосферных фронтов. Эти фронты также могут быть либо тёплыми, либо холодными.
Каждому атмосферному фронту присуща своя система облаков, осадков, барических тенденций по обе стороны фронта, ветра, явлений погоды. Выявление АФ на картах погоды – наиболее сложная операция синоптического анализа.
•Циклон – атмосферный вихрь с замкнутыми изобарами, кратными 5 гПа, с пониженным давлением, минимальным в центре, и вращением воздуха против часовой стрелки
всеверном полушарии (по часовой – в южном).
•Антициклон – атмосферный вихрь с замкнутыми изобарами, кратными 5 гПа, с повышенным давлением, максимальным в центре, и вращением воздуха по часовой стрелки
всеверном полушарии (против часовой – в южном).
На отечественных картах погоды циклоны обозначаются Н (низкое), антициклоны
– В (высокое) (Рис. 7.2 и 7.3). На зарубежных картах погоды, напомним, изобары прово-
дятся через 4 гПа, кратно 4, а в центрах циклонов и антициклонов проставляются, соот-
ветственно, L (Low) или H (High).
•Барическая ложбина – система изобар, обычно на периферии циклона, направленная выпуклостью в сторону высокого давления (см. рис. 7.2 и 7.3).
Барическая ложбина
Н
Барический гребень
Рис. 7.2. Циклонический вихрь на уровне моря над Охотским морем и прилегающей акваторией Тихого океана 24 октября 2001 г. (информация Японского метеорологического агентства)
Н.А. Дашко Курс лекций по синоптической метеорологии

7. Принципы синоптического анализа |
6 |
Барическая ложбина
В
Барический гребень
Рис. 7.3. Антициклонический вихрь над Тихим океаном 10 июля 2000 г. (информация Японского метеорологического агентства, уровень моря)
•Барический гребень – система изобар, обычно на периферии антициклона, направленная выпуклостью в сторону низкого давления (см. рис. 7.2 и 7.3).
Барические ложбины и гребни имеют горизонтальные оси, являющиеся для ложбины линией сходимости воздушных течений, для гребня – линией расходимости.
Сходимость воздушных течений к оси барической ложбины приводит к развитию восходящих движений воздуха и образованию облачности и осадков. Расходимость воздушных течений на оси барического гребня вызывает нисходящие движения и размывание облачности. Ось барической ложбины является удобным местом для встречи воздушных масс различных свойств, т.е. для образования и обострения атмосферных фронтов.
•Струйное течение – перенос воздуха в виде узкого течения с большими скоростями в верхней тропосфере и нижней стратосфере. Длина СТ – тысячи км, ширина – сотни км, вертикальная мощность – несколько км. Струйное течение имеет ось, где наблюдаются максимальные скорости ветра. Условно за нижний предел скорости для струйного течения принята скорость 30 м/с, на оси струи скорости могут превышать 50-100 м/с. Струйные течения были открыты сравнительно недавно – в 1945 г., при выполнении полетов в верхней тропосфере и стратосфере американскими ВВС в районе Японии.
Сдвиг ветра по вертикали в области струйного течения – около 5-10 м/с на 1 км по вертикали, и 10 м/с на 100 км по горизонтали. Зоны струйных течений – это зоны огром-
Н.А. Дашко Курс лекций по синоптической метеорологии