- •Академия управления при Президенте Республики Беларусь
- •Содержание
- •Тема 1. Элементарная математика 13
- •Тема 2. Аналитическая геометрия 38
- •Тема 3. Линейная алгебра 81
- •Введение Лекция 1. Основы математической логики
- •Высказывания и логические связки
- •Контрольные вопросы к лекции №1
- •Тема 1. Элементарная математика Лекция 2. Элементы теории множеств
- •Основные понятия
- •Основные операции над множествами
- •Отображения
- •Отношения эквивалентности и упорядоченности
- •Контрольные вопросы к лекции №2
- •Лекция 3. Числовые множества
- •Основные понятия
- •Соединения. Бином Ньютона
- •Комплексные числа
- •Операции над комплексными числами
- •Формула Муавра. Извлечение корня из комплексного числа
- •Контрольные вопросы к лекции №3
- •Тема 2. Аналитическая геометрия Лекция 4. Векторы
- •Основные понятия
- •Линейные операции над векторами
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •Направляющие косинусы
- •Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Контрольные вопросы к лекции №4
- •Лекция 5. Прямая
- •Основные понятия
- •Взаимное расположение прямых
- •Контрольные вопросы к лекции №5
- •Лекция 6. Плоскость
- •Основные понятия
- •Нормальное уравнение плоскости
- •Взаимное расположение плоскостей
- •Контрольные вопросы к лекции №6
- •Лекция 7. Кривые второго порядка
- •Уравнение фигуры
- •Гипербола
- •Парабола
- •Исследование на плоскости уравнения второй степени
- •Контрольные вопросы к лекции №7
- •Тема 3. Линейная алгебра Лекция 8. Понятие евклидова пространства
- •Коллинеарные векторы
- •Размерность и базис векторного пространства
- •Контрольные вопросы к лекции №8
- •Лекция 9. Матрицы
- •Основные понятия
- •Операции над матрицами
- •Определитель матрицы
- •Ранг матрицы
- •Обратная матрица
- •Контрольные вопросы к лекции №9
- •Лекция 10. Понятие линейного оператора
- •Переход к новому базису
- •Линейное преобразование переменных
- •Собственные значения и собственные вектора матриц
- •Контрольные вопросы к лекции №10
- •Лекция 11. Многочлены
- •Основные понятия
- •Теорема о делении с остатком
- •Теорема Безу
- •Контрольные вопросы к лекции №11
- •Лекция 12. Квадратичные формы
- •Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Канонический базис из собственных векторов матрицы квадратичной формы
- •Канонический базис Якоби квадратичной формы
- •Положительно и отрицательно определенные квадратичные формы
- •Применение квадратичных форм к исследованию кривых второго прядка
- •Контрольные вопросы к лекции №12
- •Лекция 13. Системы линейных уравнений
- •Основные понятия
- •Критерий совместности системы линейных уравнений
- •Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •Однородные системы уравнений
- •Разрешенные системы линейных уравнений
- •Контрольные вопросы к лекции №13
- •Лекция 14. Основы линейного программирования
- •Линейное программирование
- •Задача линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Множества допустимых решений
- •Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками
- •Симплекс-метод с естественным базисом
- •Симплексный метод с искусственным базисом (м-метод)
- •Теория двойственности
- •Теоремы двойственности
- •Контрольные вопросы к лекции 14
- •Экзаменационные вопросы
- •Литература
- •Высшая математика
- •Часть I
- •220007, Г. Минск, ул. Московская, 17.
Множества допустимых решений
Множество точек называется выпуклым, если оно вместе с любыми двумя своими точками содержит их произвольную выпуклую линейную комбинацию.
Выпуклой линейной комбинациейпроизвольных точекЕвклидова пространстваназывается сумма, где- произвольные неотрицательные числа, сумма которых равна 1.
Геометрически это означает, что если множеству с любыми двумя его произвольными точками полностью принадлежит и отрезок, соединяющий эти точки, то оно будет выпуклым. Например, выпуклыми множествами являются прямолинейный отрезок, прямая, круг, шар, куб, полуплоскость, полупространство и др.
Точка множества называется граничной, если любая окрестность этой точки сколь угодно малого размера содержит точки, как принадлежащие множеству, так и не принадлежащие ему.
Граничные точки множества образуют его границу. Множество называетсязамкнутым, если оно содержит все свои граничные точки.
Ограниченнымназывается множество, если существует шар с радиусом конечной длины и центром в любой точке множества, содержащий полностью в себе данное множество. В противном случае множество будет неограниченным.
Пересечение двух или более выпуклых множеств будет выпуклым множеством, так как оно отвечает определению выпуклого множества.
Точка выпуклого множества называется угловой, если она не может быть представлена в виде выпуклой линейной комбинации двух других различных точек этого множества.
Так, угловые точки треугольника – его вершины, круга – точки окружности, ее ограничивающие, а прямая, полуплоскость, плоскость, полупространство, пространство не имеют угловых точек.
Выпуклое замкнутое ограниченное множество на плоскости, имеющее конечное число угловых точек, называется выпуклым многоугольником, а замкнутое выпуклое ограниченное множество в трехмерном пространстве, имеющее конечное число угловых точек, называется выпуклыммногогранником.
Теорема.Любая точка многоугольника является выпуклой линейной комбинацией его угловых точек.
Теорема.Область допустимых решений задачи линейного программирования является выпуклым множеством.
Уравнение целевой функции при фиксированных значениях самой функции является уравнением прямой линии (плоскости, гиперплоскости и т.д.). Прямая, уравнение которой получено из целевой функции при равенстве ее постоянной величине, называется линией уровня.
Линия уровня, имеющая общие точки с областью допустимых решений и расположенная так, что область допустимых решений находится целиком в одной из полуплоскостей, называется опорной прямой.
Теорема.Значения целевой функции в точках линии уровня увеличиваются, если линию уровня перемещать параллельно начальному положению в направлении нормали и убывают при перемещении в противоположном направлении.
Теорема.Целевая функция задачи линейного программирования достигает экстремума в угловой точке области допустимых решений; причем, если целевая функция достигает экстремума в нескольких угловых точках области допустимых решений, она также достигает экстремума в любой выпуклой комбинации этих точек.
Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками
Каноническая задача линейного программирования в векторной форме имеет вид:
Положительным координатам допустимых решений ставятся в соответствие векторы условий. Эти системы векторов зависимы, так как число входящих в них векторов больше размерности векторов.
Базисным решением системыназывается частное решение, в котором неосновные переменные имеют нулевые значения. Любая система уравнений имеет конечное число базисных решений, равное, где– число неизвестных,– ранг системы векторов условий. Базисные решения, координаты которых удовлетворяют условию неотрицательности, являются опорными.
Опорным решениемзадачи линейного программирования называется такое допустимое решение, для которого векторы условий, соответствующие положительным координатам, линейно независимы.
Число отличных от нуля координат опорного решения не может превосходить ранга системы векторов условий (т.е. числа линейно независимых уравнений системы ограничений).
Если число отличных от нуля координат опорного решения равно , то такое решение называетсяневырожденным, в противном случае, если число отличных от нуля координат опорного решения меньше, такое решение называетсявырожденным.
Базисом опорного решенияназывается базис системы векторов условий задачи, в состав которой входят векторы, соответствующие отличным от нуля координатам опорного решения.
Теорема.Любое опорное решение является угловой точкой области допустимых решений.
Теорема.Любая угловая точка области допустимых решений является опорным решением.
Пример.
Графический метод решения задачи линейной оптимизации рассмотрим на примере задачи производственного планирования при = 2.
Предприятие изготавливает изделия двух видов А и В. Для производства изделий оно располагает сырьевыми ресурсами трех видов С, D и Е в объемах 600, 480 и 240 единиц соответственно. Нормы расхода ресурсов на единицу продукции каждого вида известны и представлены в табл. 14.1
Решение:
|
Прибыль от реализации изделия А составляет 40 млн. руб., а изделия В - 50 млн.руб. Требуется найти объемы производства изделий А и В, обеспечивающие максимальную прибыль.
|
Построим математическую модель задачи, для чего обозначим и- объемы производства изделий А и В соответственно.
Тогда прибыль предприятия от реализации изделий А иизделий В составит:
.
Ограничения по ресурсам будут иметь вид:
Естественно, объемы производства должны быть неотрицательными .
Решение сформулированной задачи найдем, используя геометрическую интерпретацию. Определим сначала многоугольник решений, для чего систему ограничений неравенств запишем в виде уравнений и пронумеруем их:
Каждое из записанных уравнений представляет собой прямую на плоскости, причем 4-я и 5-я прямые являются координатными осями.
Чтобы построить первую прямую, найдем точки ее пересечения с осями координат: при , а при. Далее нас интересует, по какую сторону от прямой будет находиться полуплоскость, соответствующая первому неравенству. Чтобы определить искомую полуплоскость, возьмем точкуи, подставив ее координаты в неравенство, видим, что оно удовлетворяется. Так как точкалежит левее первой прямой, то и полуплоскость будет находиться левее прямой. На рис. 14.1 расположение полуплоскости относительно первой прямой отмечено стрелками.
Аналогично построены 2-я и 3-я прямые и найдены полуплоскости, соответствующие 2-му и 3-му неравенству. Точки, удовлетворяющие ограничениям , находятся в первом квадранте.
Множество точек, удовлетворяющих всем ограничениям одновременно, является ОДР системы ограничений. Такой областью на графике (рис. 14.1) является многоугольник .
Любая точка многоугольника решений удовлетворяет системе ограничений задачи и, следовательно, является ее решением. Это говорит о том, что эта задача линейной оптимизации имеет множество допустимых решений, т.е. многовариантна. Нам же необходимо найти решение, обеспечивающее максимальную прибыль.
Чтобы найти эту точку, приравняем функцию к нулю и построим соответствующую ей прямую. Вектор–градиент прямой функции имеет координаты.
Рис. 14.1
Изобразим вектор на графике и построим прямую функции перпендикулярно вектору на рис. 14.1. Перемещая прямую функции параллельно самой себе в направлении вектора, видим, что последней точкой многоугольника решений, которую пересечет прямая функции, является угловая точка В. Следовательно, в точке В функция достигает максимального значения. Координаты точки В находим, решая систему уравнений, прямые которых пересекаются в данной точке.
Решив эту систему, получаем, что .
Следовательно, если предприятие изготовит изделия в найденных объемах, то получит максимальную прибыль, равную:
(млн. руб.).
Алгоритм решения задачи линейного программирования графическим методом таков:
Строится область допустимых решений;
Строится вектор нормали к линии уровня с точкой приложении в начале координат;
Перпендикулярно вектору нормали проводится одна из линий уровня, проходящая через начало координат;
Линия уровня перемещается до положения опорной прямой. На этой прямой и будут находиться максимум или минимум функции.
В зависимости от вида области допустимых решений и целевой функции задача может иметь единственное решение, бесконечное множество решений или не иметь ни одного оптимального решения.
На рис. 14.3 показан случай, когда прямая функции параллельна отрезку АВ, принадлежащему ОДР. Максимум функции достигается в точке А и в точке В, а, следовательно, и в любой точке отрезка АВ, т.к. эти точки могут быть выражены в виде линейной комбинации угловых точек А и В.
Н
Рис. 14.4
Рис.14.54.5
Основные понятия симплексного метода решения задачи линейного программирования.
Среди универсальных методов решения задач линейного программирования наиболее распространен симплексный метод (или симплекс-метод), разработанный американским ученым Дж.Данцигом. Суть этого метода заключается в том, что вначале получают допустимый вариант, удовлетворяющий всем ограничениям, но необязательно оптимальный (так называемое начальное опорное решение); оптимальность достигается последовательным улучшением исходного варианта за определенное число этапов (итераций). Нахождение начального опорного решения и переход к следующему опорному решению проводятся на основе применения рассмотренного выше метода Жордана-Гаусса для системы линейных уравнений в канонической форме, в которой должна быть предварительно записана исходная задача линейного программирования; направление перехода от одного опорного решения к другому выбирается при этом на основе критерия оптимальности (целевой функции) исходной задачи.
Симплекс-методоснован на следующих свойствах задачи линейного программирования:
Не существует локального экстремума, отличного от глобального. Другими словами, если экстремум есть, то он единственный.
Множество всех планов задачи линейного программирования выпукло.
Целевая функция ЗЛП достигает своего максимального (минимального) значения в угловой точке многогранника решений (в его вершине). Если целевая функция принимает свое оптимальное значение более чем в одной угловой точке, то она достигает того же значения в любой точке, являющейся выпуклой линейной комбинацией этих точек.
Каждой угловой точке многогранника решений отвечает опорный план ЗЛП.
Рассмотрим две разновидности симплексного метода: симплекс-метод с естественным базисом и симплекс-метод с искусственным базисом (или М-метод).