- •Академия управления при Президенте Республики Беларусь
- •Содержание
- •Тема 1. Элементарная математика 13
- •Тема 2. Аналитическая геометрия 38
- •Тема 3. Линейная алгебра 81
- •Введение Лекция 1. Основы математической логики
- •Высказывания и логические связки
- •Контрольные вопросы к лекции №1
- •Тема 1. Элементарная математика Лекция 2. Элементы теории множеств
- •Основные понятия
- •Основные операции над множествами
- •Отображения
- •Отношения эквивалентности и упорядоченности
- •Контрольные вопросы к лекции №2
- •Лекция 3. Числовые множества
- •Основные понятия
- •Соединения. Бином Ньютона
- •Комплексные числа
- •Операции над комплексными числами
- •Формула Муавра. Извлечение корня из комплексного числа
- •Контрольные вопросы к лекции №3
- •Тема 2. Аналитическая геометрия Лекция 4. Векторы
- •Основные понятия
- •Линейные операции над векторами
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •Направляющие косинусы
- •Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Контрольные вопросы к лекции №4
- •Лекция 5. Прямая
- •Основные понятия
- •Взаимное расположение прямых
- •Контрольные вопросы к лекции №5
- •Лекция 6. Плоскость
- •Основные понятия
- •Нормальное уравнение плоскости
- •Взаимное расположение плоскостей
- •Контрольные вопросы к лекции №6
- •Лекция 7. Кривые второго порядка
- •Уравнение фигуры
- •Гипербола
- •Парабола
- •Исследование на плоскости уравнения второй степени
- •Контрольные вопросы к лекции №7
- •Тема 3. Линейная алгебра Лекция 8. Понятие евклидова пространства
- •Коллинеарные векторы
- •Размерность и базис векторного пространства
- •Контрольные вопросы к лекции №8
- •Лекция 9. Матрицы
- •Основные понятия
- •Операции над матрицами
- •Определитель матрицы
- •Ранг матрицы
- •Обратная матрица
- •Контрольные вопросы к лекции №9
- •Лекция 10. Понятие линейного оператора
- •Переход к новому базису
- •Линейное преобразование переменных
- •Собственные значения и собственные вектора матриц
- •Контрольные вопросы к лекции №10
- •Лекция 11. Многочлены
- •Основные понятия
- •Теорема о делении с остатком
- •Теорема Безу
- •Контрольные вопросы к лекции №11
- •Лекция 12. Квадратичные формы
- •Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Канонический базис из собственных векторов матрицы квадратичной формы
- •Канонический базис Якоби квадратичной формы
- •Положительно и отрицательно определенные квадратичные формы
- •Применение квадратичных форм к исследованию кривых второго прядка
- •Контрольные вопросы к лекции №12
- •Лекция 13. Системы линейных уравнений
- •Основные понятия
- •Критерий совместности системы линейных уравнений
- •Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •Однородные системы уравнений
- •Разрешенные системы линейных уравнений
- •Контрольные вопросы к лекции №13
- •Лекция 14. Основы линейного программирования
- •Линейное программирование
- •Задача линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Множества допустимых решений
- •Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками
- •Симплекс-метод с естественным базисом
- •Симплексный метод с искусственным базисом (м-метод)
- •Теория двойственности
- •Теоремы двойственности
- •Контрольные вопросы к лекции 14
- •Экзаменационные вопросы
- •Литература
- •Высшая математика
- •Часть I
- •220007, Г. Минск, ул. Московская, 17.
Критерий совместности системы линейных уравнений
Ответ на первый вопрос дает теорема Кронекера-Капелли – критерий совместности системы линейных уравнений.
Теорема. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу ее расширенной матрицы.
Правило Крамера решения систем линейных уравнений
Рассмотрим невырожденные системы линейных уравнений, т.е. системы, у которых и определитель матрицы системы отличен от нуля. Определитель матрицы называется определителем системы. Следующая теорема, называемая правилом Крамера, отвечает на второй вопрос.
Пусть дана система двух линейных уравнений с двумя неизвестными:
|
(13.3) |
Коэффициенты этой системы составляют квадратную матрицу второго порядка:
|
(13.4) |
Решим систему (13.3). Для этого умножим первое уравнение системы на , второе – наи вычтем из первого уравнения второе:
.
Аналогично, исключая , получим.
Если , то найдем единственное решение системы:.
Общий знаменатель значений неизвестных и, обозначаемый через, называется определителем матрицы. Это определитель второго порядка. Числителями неизвестныхиявляются определители тоже второго порядка. Откуда.
Мы получили правило Крамера решения системы двух линейных уравнений с двумя неизвестными.
Правило Крамера. Если определитель системылинейных уравнений снеизвестными отличен от нуля, то система имеет единственное решение:, где‑ определитель, получаемый иззаменой-го столбца столбцом свободных членов.
Невырожденную систему линейных уравнений можно решить и иным способом.
Поскольку матрица ‑ невырожденная, то для нее существует единственная обратная матрица. Умножив обе части уравненияслева на матрицу, получим, откуда.
Мы ответили на три вопроса относительно систем линейных уравнений. Однако применение теоремы Крамера, которая позволила дать этот ответ, приводит к слишком громоздким вычислениям. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса.
Метод Гаусса
Метод Гаусса основан на теореме: если к некоторому уравнению системы прибавить другое уравнение этой системы, умноженное на любое действительное число, или умножить любое уравнение системы на отличное от нуля действительное число, то полученная система будет эквивалентна исходной.
Метод Гаусса называют также методом последовательного исключения неизвестных, осуществляя его за несколько итераций. На каждой итерации выбирается разрешающее уравнение и базисное неизвестное. В качестве разрешающего уравнения можно взять любое уравнение системы, которое ранее не было выбрано разрешающим и не все коэффициенты которого равны нулю. За базисное неизвестное выбирают неизвестное, коэффициент при котором в разрешающем уравнении, называемый разрешающим коэффициентом, не равен нулю.
Алгоритм метода следующий:
Выбирают разрешающее уравнение и базисное неизвестное.
Делят обе части разрешающего уравнения на разрешающий коэффициент и исключают базисное неизвестное из всех уравнений системы, кроме разрешающего. Отбрасывают, если они появились, уравнения, все коэффициенты и свободный член в котором равны нулю. Если получилось уравнение, в котором коэффициенты нулевые, а свободный член не нуль, то система несовместна, конец. Если таких уравнений нет, то шаг 1. Если все уравнения были использованы в качестве разрешающих, то шаг 3.
Если нет, то шаг 1.
Базисные неизвестные оставляют слева, а небазисные (назовем их свободными, так как они могут принимать любые значения) переносят вправо. Тем самым получено общее решение системы. Конец.