Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Высшая математика.doc
Скачиваний:
256
Добавлен:
04.03.2016
Размер:
2.6 Mб
Скачать

Критерий совместности системы линейных уравнений

Ответ на первый вопрос дает теорема Кронекера-Капелли – критерий совместности системы линейных уравнений.

Теорема. Система линейных уравнений совместна тогда и только тогда, когда ранг матрицы системы равен рангу ее расширенной матрицы.

Правило Крамера решения систем линейных уравнений

Рассмотрим невырожденные системы линейных уравнений, т.е. системы, у которых и определитель матрицы системы отличен от нуля. Определитель матрицы называется определителем системы. Следующая теорема, называемая правилом Крамера, отвечает на второй вопрос.

Пусть дана система двух линейных уравнений с двумя неизвестными:

(13.3)

Коэффициенты этой системы составляют квадратную матрицу второго порядка:

(13.4)

Решим систему (13.3). Для этого умножим первое уравнение системы на , второе – наи вычтем из первого уравнения второе:

.

Аналогично, исключая , получим.

Если , то найдем единственное решение системы:.

Общий знаменатель значений неизвестных и, обозначаемый через, называется определителем матрицы. Это определитель второго порядка. Числителями неизвестныхиявляются определители тоже второго порядка. Откуда.

Мы получили правило Крамера решения системы двух линейных уравнений с двумя неизвестными.

Правило Крамера. Если определитель системылинейных уравнений снеизвестными отличен от нуля, то система имеет единственное решение:, где‑ определитель, получаемый иззаменой-го столбца столбцом свободных членов.

Невырожденную систему линейных уравнений можно решить и иным способом.

Поскольку матрица ‑ невырожденная, то для нее существует единственная обратная матрица. Умножив обе части уравненияслева на матрицу, получим, откуда.

Мы ответили на три вопроса относительно систем линейных уравнений. Однако применение теоремы Крамера, которая позволила дать этот ответ, приводит к слишком громоздким вычислениям. Практически для решения систем линейных уравнений чаще всего применяется метод Гаусса.

Метод Гаусса

Метод Гаусса основан на теореме: если к некоторому уравнению системы прибавить другое уравнение этой системы, умноженное на любое действительное число, или умножить любое уравнение системы на отличное от нуля действительное число, то полученная система будет эквивалентна исходной.

Метод Гаусса называют также методом последовательного исключения неизвестных, осуществляя его за несколько итераций. На каждой итерации выбирается разрешающее уравнение и базисное неизвестное. В качестве разрешающего уравнения можно взять любое уравнение системы, которое ранее не было выбрано разрешающим и не все коэффициенты которого равны нулю. За базисное неизвестное выбирают неизвестное, коэффициент при котором в разрешающем уравнении, называемый разрешающим коэффициентом, не равен нулю.

Алгоритм метода следующий:

  1. Выбирают разрешающее уравнение и базисное неизвестное.

  2. Делят обе части разрешающего уравнения на разрешающий коэффициент и исключают базисное неизвестное из всех уравнений системы, кроме разрешающего. Отбрасывают, если они появились, уравнения, все коэффициенты и свободный член в котором равны нулю. Если получилось уравнение, в котором коэффициенты нулевые, а свободный член не нуль, то система несовместна, конец. Если таких уравнений нет, то шаг 1. Если все уравнения были использованы в качестве разрешающих, то шаг 3.

  3. Если нет, то шаг 1.

  4. Базисные неизвестные оставляют слева, а небазисные (назовем их свободными, так как они могут принимать любые значения) переносят вправо. Тем самым получено общее решение системы. Конец.