- •Академия управления при Президенте Республики Беларусь
- •Содержание
- •Тема 1. Элементарная математика 13
- •Тема 2. Аналитическая геометрия 38
- •Тема 3. Линейная алгебра 81
- •Введение Лекция 1. Основы математической логики
- •Высказывания и логические связки
- •Контрольные вопросы к лекции №1
- •Тема 1. Элементарная математика Лекция 2. Элементы теории множеств
- •Основные понятия
- •Основные операции над множествами
- •Отображения
- •Отношения эквивалентности и упорядоченности
- •Контрольные вопросы к лекции №2
- •Лекция 3. Числовые множества
- •Основные понятия
- •Соединения. Бином Ньютона
- •Комплексные числа
- •Операции над комплексными числами
- •Формула Муавра. Извлечение корня из комплексного числа
- •Контрольные вопросы к лекции №3
- •Тема 2. Аналитическая геометрия Лекция 4. Векторы
- •Основные понятия
- •Линейные операции над векторами
- •Проекция вектора на ось
- •Линейная зависимость векторов
- •Базис. Координаты вектора в базисе
- •Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
- •Направляющие косинусы
- •Скалярное произведение
- •Векторное произведение
- •Смешанное произведение
- •Контрольные вопросы к лекции №4
- •Лекция 5. Прямая
- •Основные понятия
- •Взаимное расположение прямых
- •Контрольные вопросы к лекции №5
- •Лекция 6. Плоскость
- •Основные понятия
- •Нормальное уравнение плоскости
- •Взаимное расположение плоскостей
- •Контрольные вопросы к лекции №6
- •Лекция 7. Кривые второго порядка
- •Уравнение фигуры
- •Гипербола
- •Парабола
- •Исследование на плоскости уравнения второй степени
- •Контрольные вопросы к лекции №7
- •Тема 3. Линейная алгебра Лекция 8. Понятие евклидова пространства
- •Коллинеарные векторы
- •Размерность и базис векторного пространства
- •Контрольные вопросы к лекции №8
- •Лекция 9. Матрицы
- •Основные понятия
- •Операции над матрицами
- •Определитель матрицы
- •Ранг матрицы
- •Обратная матрица
- •Контрольные вопросы к лекции №9
- •Лекция 10. Понятие линейного оператора
- •Переход к новому базису
- •Линейное преобразование переменных
- •Собственные значения и собственные вектора матриц
- •Контрольные вопросы к лекции №10
- •Лекция 11. Многочлены
- •Основные понятия
- •Теорема о делении с остатком
- •Теорема Безу
- •Контрольные вопросы к лекции №11
- •Лекция 12. Квадратичные формы
- •Понятие квадратичной формы
- •Канонический базис квадратичной формы
- •Канонический базис из собственных векторов матрицы квадратичной формы
- •Канонический базис Якоби квадратичной формы
- •Положительно и отрицательно определенные квадратичные формы
- •Применение квадратичных форм к исследованию кривых второго прядка
- •Контрольные вопросы к лекции №12
- •Лекция 13. Системы линейных уравнений
- •Основные понятия
- •Критерий совместности системы линейных уравнений
- •Правило Крамера решения систем линейных уравнений
- •Метод Гаусса
- •Однородные системы уравнений
- •Разрешенные системы линейных уравнений
- •Контрольные вопросы к лекции №13
- •Лекция 14. Основы линейного программирования
- •Линейное программирование
- •Задача линейного программирования
- •Приведение общей задачи линейного программирования к канонической форме
- •Множества допустимых решений
- •Опорное решение задачи линейного программирования, его взаимосвязь с угловыми точками
- •Симплекс-метод с естественным базисом
- •Симплексный метод с искусственным базисом (м-метод)
- •Теория двойственности
- •Теоремы двойственности
- •Контрольные вопросы к лекции 14
- •Экзаменационные вопросы
- •Литература
- •Высшая математика
- •Часть I
- •220007, Г. Минск, ул. Московская, 17.
Базис. Координаты вектора в базисе
Определим понятие базиса на прямой, плоскости и в пространстве.
Базисом на прямойназывается любой ненулевой векторна этой прямой. Любой другой вектор, коллинеарный данной прямой, может быть выражен через векторв виде.
Базисом на плоскостиназываются любых два линейно независимых вектораиэтой плоскости, взятые в определенном порядке. Любой третий вектор, компланарный плоскости, на которой выбран базис, может быть представлен в виде.
Базисом в трехмерном пространстве называются любые три некомпланарных вектора , взятые в определенном порядке. Такой базис обозначается. Пусть‑ произвольный вектор трехмерного пространства, в котором выбран базис. Тогда существуют числатакие, что:
|
(4.5) |
Коэффициенты называются координатами векторав базисе, а формула (4.5) есть разложение векторапо данному базису.
Координаты вектора в заданном базисе определяются однозначно. Введение координат для векторов позволяет сводить различные соотношения между векторами к числовым соотношениям между их координатами. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат этих векторов.
Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении
Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба для измерения длин и трех пересекающихся в точке взаимно перпендикулярных осей, первая из которых называется осью абсцисс, вторая – осью ординат, третья – осью аппликат; точка‑ начало координат (Рис. 4.4).
Положение координатных осей можно задать с помощью единичных векторов , направленных соответственно по осям. Векторыназываются основными или базисными ортами и определяют базисв трехмерном пространстве.
Пусть в пространстве дана точка . Проектируя ее на ось, получим точку. Первой координатойилиабсциссой точки называется длина вектора, взятая со знаком плюс, еслинаправлен в ту же сторону, что и вектор, и со знаком минус ‑ если в противоположную. Аналогично проектируя точкуна осии, определим ееординату иаппликату .Тройка чиселвзаимно однозначно соответствует точке.
Система координат называется правой, если вращение от осик осив ближайшую сторону видно с положительного направления осисовершающимися против часовой стрелки, илевой, если вращение от осик осив ближайшую сторону видно совершающимися по часовой стрелке.
Вектор , направленный из начала координат в точкуназываетсярадиус-вектором точки , т.е.:
|
(4.6) |
Если даны координаты точек и, то координаты вектораполучаются вычитанием из координат его концакоординат начала:или.
Следовательно, по формуле (4.5):
или |
(4.7) |
При сложении (вычитании) векторов их координаты складываются (вычитаются), при умножении вектора на число все его координаты умножаются на это число.
Длина вектора равна квадратному корню из суммы квадратов его координат.
. |
(4.8) |
Длина вектора ,заданного координатами своих концов, т.е. расстояние между точками и вычисляется по формуле:
. |
(4.9) |
Если иколлинеарны, то они отличаются друг от друга скалярным множителем. Следовательно, у коллинеарных векторов координаты пропорциональны:
. |
(4.10) |
Пусть точка делит отрезок между точкамиив отношении, тогда радиус-вектор точкивыражается через радиусы-векторыиего концов по формуле:.
Отсюда получаются координатные формулы:
.
В частности, если точка делит отрезокпополам, тои, т.е..