Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
petuhov_vet_genetika.doc
Скачиваний:
322
Добавлен:
29.02.2016
Размер:
5.56 Mб
Скачать

34. Некоторые биохимические полиморфные системы

Символ локуса

Число аллелей

Система

Свиньи

Овцы

Лошади

Куры

Крупный рогатый скот

Гемоглобин

Альбумин

Трансферрин

НЬ Alb Tf

5 7 13

2 3 10

2 3 4

222


109 12

Система

Свиньи

Овцы

Лошади

Куры

Крупный рогатый скот

Цсрулоплазмин

Ср

3

Эстераза

Es

2

р-Лактоглобулин

P-Lg

4

as 1-Казеин

asj-Cn

4

р- Казеин

P-Cn

6

к-Казеин

к-Cn

2

у-Казеин

y-Cn

4

Аллели гемоглобинового локуса обозначаются так: HtA HbB и т. д., а генотип — Hb^HtA Hb°HbB и т. д. В связи с кододоми-нантным наследованием большинства биохимических систем фе­нотип животного соответствует его генотипу, поэтому фенотип можно записать НЬАА или НЬА, НЬВВ или НЬВ.

Замещение аминокислот в белке может вызвать функциональ­ные различия полиморфных форм. Например, у человека кроме нормального гемоглобина НЬ* известно более 50 патологических вариантов S, С, G и т. д., которые вызывают различные гемогло­бинопатии (серповидно-клеточная анемия S, талассемия С). Одним из первых был открыт гемоглобин серповидных эритроци­тов, который от нормального отличается заменой в шестом поло­жении глутаминовой аминокислоты на валин. В районах распро­странения тропической малярии лица, гомозиготные по HbsHbs, погибают в раннем возрасте от серповидно-клеточной анемии. Гетерозиготы МУ^НЬ8 устойчивы к малярии, а люди с нормаль­ным генотипом НЬАНЬА предрасположены к заболеванию.

Это неоспоримый пример сбалансированного полиморфизма, когда приспособленность гетерозигот выше, чем гомозигот, а оба аллеля сохраняются в популяции с промежуточной частотой. Это доказывает существование однолокусного гетерозиса по устойчи­вости к болезни. В. П. Эфроимсон (1968) выдвинул гипотезу о том, что иммунитет к малярии имеет адаптивное значение и обусловлен изменением молекулы гемоглобина НЬ, что препят­ствует его использованию малярийным плазмодием.

Гемоглобин выполняет важную для организма функцию пере­носа кислорода из органов дыхания к тканям и переноса угле­кислого газа от тканей в органы дыхания. У крупного рогатого скота открыто 10 типов гемоглобина, но у скота швицкой, ко­стромской, джерсейской и других пород в основном встречаются аллели ШЛ и НЬВ. У животных черно-пестрой, айрширской, герефордской и других пород имеется только один тип А.

Хорошо изучен полиморфизм трансферрина (Tf), кото­рый переводит железо плазмы в диионизированную форму и

223

переносит его в костный мозг, где оно используется вновь для кроветворения. Трансферрин также подавляет размножение ви­русов в организме. У человека недостаточность трансферрина может быть следствием некоторых перенесенных заболеваний, в частности наследственного гемохроматоза. Количество Tf снижа­ется при циррозе печени, инфекционных болезнях. На рисунке 47 представлена схема расшифровки электрофореграммы типов трансферрина. Известно 12 аллелей Tf, но среди европейских пород наиболее часто встречаются аллели A, Di, D2 и Е.

Белок церулоплазмин (Ср) играет центральную роль в обмене меди в организме, являясь основным переносчиком ее в ткани. Нарушение функции церулоплазмина или снижение его содержания в плазме крови ведет, например у человека, к воз­никновению генетического заболевания нервной системы с не­кротическими изменениями в печени.

Все больше появляется работ по иммуногенетическому анализу белковых систем. Генетически детерминируемые анти-генные*^варианты сывороточных белков, по которым различают особей одного вида, называют аллотипами. О. К. Баранов (1981)" у американской норки выявил 8 аллотипов липопротеина (Lpm), обозначенных цифрами от 1 до 8. Липопротеины транспортируют липиды. Предполагают, что аллотипы Lpm-системы кодируются комплексом тесно сцепленных гомоло­гичных генов. Аллотипы в основном наследуются аллогруппами,

Миграция

Старт

(+J Фенотип Генотип

Трансферрин

i

а! I

i i i

:1

!0f

1 i i i i i i i i i i ii i i i

£ D2 D, С

В А

Рис. 47. Расшифровка электрофореграммы различных типов сывороточных трансферринов крупного рогатого скота

224

I

например Lpm6>8, Lpm4>6> 8, Lpm3>4>6>8 и т. д. Аллогруппа — совокупность аллотипов, наследуемых как одна группа. Со­вокупность сцепленных генов одной хромосомы, контроли­рующих аллогруппу, называют гаплотипом.

У свиней идентифицированные аллотипы липопротеина де­терминируются генами пяти локусов, временно обозначенных р, г, s, t, u. Закрытая система Lpb включает 8 аллелей, Lpr и Lpu — по два аллеля, а открытые системы Lps и Lpt — один аллель. Все аллотипы определяются аутосомными кодоминантными генами. Локусы и, р, t тесно сцеплены, а г и s локализованы в разных хромосомах. Имеются данные о связи некоторых типов Lpb с артериосклерозом у свиней.

ЗНАЧЕНИЕ БИОХИМИЧЕСКОГО ПОЛИМОРФИЗМА

Биохимические полиморфные системы белков используются для следующих целей:

  1. изучения причин и динамики генотипической изменчивос­ ти, составляющей основу эволюционной генетики;

  1. уточнения происхождения отдельных животных;

  1. описания межпородной и внутрипородной дифференциа­ ции, изучения филогенеза и аллелофонда пород, линий и се­ мейств, а также генетических процессов, происходящих в попу­ ляциях животных, и изменения их генетической структуры в процессе селекции;

  1. определения моно- и дизиготных двоен;

  2. построения генетических карт хромосом;

  3. подбора гетерозисной сочетаемости;

  1. выявления связи с резистентностью к заболеваниям, про­ дуктивностью;

  2. использования биохимических систем в качестве генетичес­ ких маркеров в селекции животных.

Изучение 9 полиморфных систем белков у 10 главных групп скота позволило подтвердить вывод о том, что зебувидный скот Индии значительно отличается от европейских пород и принад­лежит к другому виду (Bos indicus). Санга (тип африканского горбатого скота) занимает промежуточное положение между ин­дийским зебу и европейскими породами, но в то же время имеет свои уникальные признаки. Часть из них — следствие обмена генов в результате миграции зебувидного скота Индии в Африку. Использование генных частот позволяет вычислить генетические дистанции между породами и определить их эволюционную вза­имосвязь. На рисунке 48 в качестве примера показаны эволюци­онные взаимосвязи между 14 породами скота.

По данным С. А. Петрушки (1970), частота аллеля p-LgA была в 2 раза выше у животных голландской и симментальской пород (0,514 и 0,436) в сравнении с бурой латвийской (0,210). Многие

225

Герефордская

Исландская Джерсейская

Шороле.

Retinto \ Испанские Delidia J п°Р°°ы Иберийский

Mertobenga\ Португальские Alentejana JпоРоды

Американская длиннорогая

Рис. 48. Эволюционные взаимосвязи между 14 породами скота, вычисленные на основании генетического расстояния по 14 локусам. Филогенетическое древо изо­бражено в полярных координатах; расстояние оценивалось способом наименьших квадратов радиальной длины каждого сегмента (по Kidd и др.,. 1980)

европейские породы имеют очень низкую частоту типов транс-феррина Tf8 и Tf*\

Использование полиморфных систем белков вместе с группа­ми крови повышает точность определения происхождения жи­вотных. Так, по группам крови отцовство можно установить в 81 % случаев, а дополнительные анализы только типов транс-феррина повышают точность до 90 %.

По данным В. В. Пилько, Ю. О. Шапиро и А. С. Гурьяновой (1970), в четырех хозяйствах Белоруссии у коров бурой латвий­ской и костромской пород с TfDD удой был выше на 256— 270 кг, чем у животных с другими генотипами. Л. С. Жеброский и др. (1979) на большом материале показали, что ген к-СпА во всех стадах связан с повышенной молочностью. Таким же эф­фектом обладает аллель P-LgA, но в то же время он снижал содержание жира в молоке коров черно-пестрой породы.

Данные по красной датской породе свидетельствуют о том, что только 3 % генетической изменчивости в содержании жира и 5 % в молочности обусловлены различиями по группам крови. Видимо, есть большая вероятность установления более тесной корреляции генетических полиморфных систем с резистентное -тью к некоторым заболеваниям вследствие менее сложной их генетической детерминации, чем признаков продуктивности.

226

Анализ полиморфизма яичного белка овоглобулинового локу-са G3 показал, что куры с типом АВ более устойчивы к пуллоро-зу—тифу. Восприимчивость к этому заболеванию кур породы леггорн была связана с аллелем G^S, а породы корниш — с алле-лем GB3.

В Австралии, а потом в Кении у породы овец ромни-марш с типом гемоглобина НЬА найдена более высокая резистентность к гемонхозу (заболевание, вызываемое нематодами, паразитирую­щими в сычуге), чем у животных с гемоглобином типов НЬВ и НЬАВ. Однако имеются сведения и об отсутствии связи типов гемоглобина у местных флоридских овец с невосприимчивостью к гемонхозу.

Устойчивость овец к лептоспирозу связана с гетерозиготнос-тью по гемоглобиновому локусу (НЬАВ), тогда как особи с типом А или В более восприимчивы. Эта инфекционная болезнь проявляется у животных кратковременной лихорадкой, желту­хой, гемоглобинурией, абортами и другими признаками. У сви­ней найдена ассоциация лептоспироза с аллелем амилазы АпА Уровень антител к лептоспирозу увеличивался у животных с этим аллелем, а с аллелем Anv8 — уменьшался.

У свиней установлена связь типов фермента фосфогексоизо-мераза (PHI) с синдромом злокачественной гипертермии (MHS). Коэффициент корреляции между чувствительностью к MHS и генотипом РН1В/РН1В равен 0,19, а относительный риск возник­новения MHS у особей этого генотипа по отношению к имею­щим его животным был 18,8.

Изучение новых биохимических полиморфных систем позво­лит глубже понять динамику генотипической изменчивости в популяциях и механизмы поддержания этой изменчивости, изме­нение генетической структуры популяций при селекции, плани­рование и контроль с их помощью селекционного процесса. Можно рассчитывать на выявление более однозначных связей отдельных аллелей или их совокупности с резистентностью к болезням, признакам продуктивности и использовать полиморф­ные системы как генетические маркеры в селекции.

Контрольные вопросы. 1. Что такое генетическая система групп крови, тип крови, феногруппа? 2. В чем заключаются особенности наследования групп Крови? 3. Как определяются группы крови у животных? 4. Какие теоретические предпосылки лежат в основе связи групп крови с продуктивностью и устойчивос­тью к болезням? 5. Какое значение группы крови имеют для практики? 6. Почему возникает гемолитическая болезнь новорожденных? Какие методы профилактики этой болезни вы знаете? 7. Что лежит в основе генетического полиморфизма? 8. Какое значение для практики имеет биохимический полиморфизм?

227

Г л а в а 14 ГЕНЕТИЧЕСКИЕ ОСНОВЫ ИММУНИТЕТА

Иммунитет — невосприимчивость организма к инфекцион­ным агентам и генетически чужеродным веществам антигенной природы. По Р. В. Петрову (1983), иммунитет — способ защиты организма от живых тел и веществ, несущих на себе признаки генетической чужеродности.

Главная функция иммунитета — иммунологический надзор за внутренним постоянством (гомеостазом) организма. Следствие* этой функции — распознование, а потом специфическое блоки­рование, нейтрализация или уничтожение генетически чужерод­ных веществ (бактерий, вирусов, раковых клеток и т. д.). За сохранение генетически обусловленной биологической индиви­дуальности отвечает иммунная система организма — совокупность всех лимфоидных органов и скоплений лимфоидных клеток. Она состоит из центральных и периферических органов. Централь­ные органы иммунной системы включают тимус, сумку Фабри-ция (у птиц) и ее аналог у млекопитающих, костный мозг, пейеровы бляшки и миндалины. К периферическим органам относят лимфатические узлы, селезенку и кровь. Иммунная сис­тема и ее главные исполнители — лимфоциты обеспечивают спе­цифическую реакцию организма на чужеродные антигены. Кроме этой системы существуют механизмы, обеспечивающие первичную ступень неспецифической сопротивляемости орга­низма паразитам (бактериям, вирусам, гельминтам и т. д.).

К неспецифическим факторам защиты относят кожные и сли­зистые покровы, фагоциты (нейтрофилы, тканевые макрофаги), естественные иммуноглобулины, систему комплемента (вклю­чающая около 20 белков), интерферон, лизоцим, пропердин, лактоферрин и т. д. Неспецифические факторы защиты действу­ют в широком спектре, хотя ряд из них может быть в большей или меньшей степени направлен против некоторых групп микро­организмов. Интерферон обладает противовирусным действием, пропердин характеризуется выраженным антимикробным свой­ством, комплемент осуществляет бактериологическое действие.

В то же время фагоциты и комплемент участвуют и в специ­фических реакциях. Фагоциты, кооперируясь с Т- и В-лимфоци-тами, принимают участие в иммунном ответе.

228

Большинство защитных механизмов организма находится под генетическим контролем. Видимо, содержание лизоцима компле­мента, пропердина и других веществ наследуется полигенно. На генетическое разнообразие по этим признакам указывают меж­породные, межлинейные и межсемейные различия. Имеются ге­нетические дефекты, ведущие к потере способности нейтрофи-лов к фагоцитозу. Один из них впервые открыт у человека и назван синдромом Чедиака—Хигаши, а сейчас он известен и у крупного рогатого скота (особенно герефордской породы), норок, бизонов, мышей и др. Синдром характеризуется наличи­ем в цитоплазме лейкоцитов больших гранул. У крупного рогато­го скота это приводит к частичному альбинизму, светобоязни и чувствительности к инфекциям. У алеутских голубых норок из­вестна алеутская болезнь, вызываемая вирусом, при которой на­блюдаются нарушения, как и при синдроме Чедиака—Хигаши. Синдром у скота и норок наследуется как аутосомно-рецессив-ный признак. Заболевают гомозиготные особи (аа).

Было также обнаружено у человека и собак генетически де­терминируемое снижение числа нейтрофилов — синдром цикли­ческая нейтропения. Эта болезнь встречается у колли с серым окрасом, которые погибают до полового созревания. Рецессив­ный ген серой окраски у колли обладает и плейотропным эф­фектом ri отношении этого летального дефекта.

Клеточная и гуморальная системы иммунитета. Стволовые лимфоидные клетки, мигрировавшие в тимус, превращаются в Т-лимфоциты (Т-клетки), которые ответственны за клеточ­ную форму иммунного ответа, а сформированные в сумке Фаб-риция (у птиц) или ее аналоге у млекопитающих становятся В-лимфоцитами (В-клетки), которые ответственны за реализацию гуморального иммунного ответа. Т- и В-системы лимфоцитов состоят из субпопуляций клеток. Так, Т-клетки образуют субпопуляцию Т-хелперов, Т-супрессоров, Т-киллеров. Первые из них способствуют превращению В-лимфоцитов в плазматические клетки, вторые блокируют антителообразование В-лимфоцитами и участвуют в становлении и поддержании иммунологической толерантности, третьи разру­шают клетки чужеродных трансплантантов и злокачественные клетки.

Многообразие иммунологических реакций является следстви­ем кооперации Т- и В-лимфоцитов и макрофагов, в результате чего образуются антитела (иммуноглобулины). Синтез антител осуществляется вплазматическихклетках, происходя­щих из В-лимфоцитов. Одна клетка после стимуляции антигена за 1 с секретирует около 2 тыс. молекул одной специфичности и определенного класса.

На поверхности В- и Т-лимфоцитов имеются рецепторы им-муноглобулиновой природы, причем на В-лимфоцитах их в де-

229

сятки и сотни раз больше. Рецепторы — это макромолекулярные структуры клеточной поверхности, с помощью которых клетки узнают антигены. Поэтому проблема специфических рецепто­ров — одна из центральных в иммунологии, так как благодаря этому происходит распознавание генетически «своего» и «чужо­го». Синтез и специфичность рецепторов контролируются гене­тически.

В-система в большей степени ответственна за иммунитет при многих бактериальных инфекциях, антитоксический иммунитет, анафилаксию, аллергию немедленного типа, некоторые аутоим­мунные заболевания (красная волчанка и др.). Т-система играет главную роль в иммунитете против большинства вирусных ин­фекций, туберкулеза, бруцеллеза, туляремии, в трансплантацион­ном и противоопухолевом иммунитете, аллергии замедленного типа, ряде иммунопатологии и др.

СТРУКТУРА ИММУНОГЛОБУЛИНОВ

Иммуноглобулины — семейство белков, специфически реагиру­ющих с антигеном, который индуцировал их образование. Тер­мины «антитело» и «иммуноглобулин» — синонимы. У большин­ства млекопитающих иммуноглобулины разделяют на 5 классов: IgG, IgA, IgM, IgD, IgE. Например, у взрослых свиней есть 3 типа сывороточных иммуноглобулинов: IgG, IgA, IgM и 2 под­класса IgG (19S и 7S), которые по физико-химическим свойст­вам аналогичны соответствующим Ig человека. Кроме сыворотки крови иммуноглобулины находятся в молозиве, молоке, слюне, секретах кишечника и т. д.

У всех видов животных и человека молекулы Ig построены из двух длинных тяжелых (Н) и двух коротких легких (L) полипеп­тидных цепей, соединенных дисульфидными мостиками. Для всех классов Ig легкие цепи являются общими, а тяжелые цепи каждого из 5 классов отличаются по антигенным, иммунологи­ческим и химическим особенностям. Тяжелые цепи иммуногло­булинов обозначают буквами греческого алфавита.

IgD IgE

8 (дельта) е (эпсилон)

Иммуноглобулин Тяжелые цепи

IgG IgA IgM

у (гамма) а (альфа) ц (мю)

легких цепях, которые обозначаются Vh, ChI, Сн2, СнЗ и Vl.Cl (рис. 49). Домены Vh и Vl выполняют функцию связывания антигена. Иммуноглобулин G расщепляется ферментом папаи-ном на три фрагмента: два Fab-фрагмента связывают антиген и один Fc-фрагмент ответствен за связывание белка комплемента, реакцию с макрофагами и др.

Реакция антиген антитело. Основной момент в процессе иммунного ответа — узнавание антителом химического маркера, характерного «чужому» веществу в отличие от «своего». Поэтому главная биологическая функция антител — их способность всту­пать в специфическую и быструю реакцию с антигеном, в ре­зультате чего образуется комплекс антиген — антите­ло (иммунный комплекс). Иммунный комплекс образуется в результате связывания активного центра антитела (п а р а т о п а) с детерминантами антигена (э п и т о п а). Эти взаимодействия могут проявляться в виде реакций агглютинации, преципитации, лизиса, нейтрализации и др.

Антитела могут усиливать фагоцитарную активность макрофа­гов (о п с о н и з а ц и я). Специфичность иммунитета проявляет­ся в том, что антитела действуют только на тот антиген, под влиянием которого они образовались. Организм, имеющий анти­тела, может оставаться в течение различного времени иммунным

соон

cooh

120

280

40

360

200

440

Легкие цепи подразделяют на два типа: каппа (к-тип) и лямбда (Х-тип). N-концевые участки тяжелых и легких цепей состоят из вариабельных (V) областей, а С-концевые участки тяжелых и легких цепей являются константными (С). Цепи Ig представлены не в виде прямых нитей, а образуют петли, возни­кающие при соединении дисульфидными мостиками аминокис­лотных остатков внутри цепи. Каждая петля называется доменом. В молекуле Ig кролика 12 доменов — по 4 на тяжелых и по 2 на

230

НОМЕР АМИНОКИСЛОТНОГО ОСТАТКА

Рис. 49. Схема молекулы IgG кролика:

£ —легкие и Я —тяжелые цепи; V— вариабельные области легких и тяжелых цепей (свет­лые); С — константные области зачернены; s — s — дисульфидные связи; Vl и Cl — домены, составляющие вариабельные и константные участки легких цепей, Ун, Сн1, Сн2, СнЗ— .домены, составляющие вариабельные и константные участки тяжелых цепей; Fab (два) и Fc (один) — фрагменты, образующиеся при расщеплении папаином; а, х, у, b, d, e локализа­ция известных аллотипических групп

231

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]