Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

Chapter 9 Astrophysics

9.1Introduction

Many of the formulas associated with astronomy and astrophysics are either too specialised for a general work such as this or are common to other fields and can therefore be found elsewhere in this book. The following section includes many of the relationships that fall into neither of these categories, including equations to convert between various astronomical coordinate systems and some basic formulas associated with cosmology.

Exceptionally, this section also includes data on the Sun, Earth, Moon, and planets. Observational astrophysics remains a largely inexact science, and parameters of these (and other) bodies are often used as approximate base units in measurements. For example, the masses of stars and galaxies are frequently quoted as multiples of the mass of the Sun (1M = 1.989 × 1030 kg), extra-solar system planets in terms of the mass of Jupiter, and so on. Astronomers seem to find it particularly di cult to drop arcane units and conventions, resulting in a profusion of measures and nomenclatures throughout the subject. However, the convention of using suitable astronomical objects in this way is both useful and widely accepted.

9

176 Astrophysics

9.2 Solar system data Solar data

equatorial radius

R

 

=

6

.

960

×

10

8 m

 

 

=

109.1R

 

 

 

 

 

 

 

mass

 

 

=

 

 

30

kg

=

 

 

 

 

10

5

M

 

M

 

1.9891

×

10

 

 

3.32946

×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

polar moment of inertia

I

 

=

5.7

×

10

46

kgm

2

=

7.09

×

10

8

I

 

 

 

 

 

 

 

 

 

 

 

bolometric luminosity

 

 

=

 

 

 

× 10

26

W

 

 

 

 

 

 

 

 

 

 

L

3.826

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e ective surface temperature

T

=

5770K

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solar constanta

 

 

 

 

 

1.368

× 103 Wm−2

 

 

 

 

 

 

 

 

 

 

 

 

absolute magnitude

MV

=

+4.83;

 

 

 

 

 

 

 

 

Mbol

=

+4.75

 

 

 

 

 

 

 

 

 

apparent magnitude

mV

=

−26.74;

 

 

 

 

 

 

mbol

=

−26.82

 

 

 

 

 

 

 

aBolometric flux at a distance of 1 astronomical unit (AU).

Earth data

equatorial radius

 

R

 

=

6.37814

×

106 m

 

 

=

9.166

×

10−3R

 

flattening

a

 

 

 

=

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

f

 

0.00335364

 

 

 

 

 

1/298.183

 

 

 

mass

 

 

M

 

=

5.9742

×

1024 kg

 

=

3.0035

 

10−6M

 

polar moment of inertia

I

 

=

8.037

 

 

37

kgm

2

=

1.41

 

 

 

× 9

I

 

 

 

×

10

 

 

 

×

10

 

 

orbital semi-major axis

b

 

 

=

 

 

 

 

 

 

 

11

m

=

 

 

 

 

 

 

 

1AU

1.495979

 

4

10

 

214.9R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

mean orbital velocity

 

 

 

 

 

 

×

 

 

×

ms

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.979

10

 

 

 

 

 

 

 

 

 

 

 

 

 

equatorial surface gravity

ge

 

=

 

 

 

 

 

 

 

2

 

 

 

(includes rotation)

 

 

9.780327ms

 

 

 

 

 

polar surface gravity

 

gp

 

=

9.832186ms−2

 

 

 

 

 

 

 

 

 

 

 

 

 

rotational angular velocity

ωe

=

7.292115

×

10−5 rads−1

 

 

 

 

 

 

 

 

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

6

 

 

 

 

 

 

 

 

 

 

 

 

 

bf equals (R Rpolar)/R . The mean radius of the Earth is 6.3710 × 10

 

m.

 

 

 

 

 

 

 

 

 

 

 

About the Sun.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Moon data

equatorial radius

 

Rm

=

 

 

 

 

6

 

 

 

=

0.27240R

 

 

 

 

1.7374 × 1022m

2

 

 

mass

 

Mm

=

7.3483

×

10

kg

=

1.230

×

10

M

 

mean orbital radius

a

a

 

=

 

 

10

8

m

=

 

 

 

 

 

m

3.84400

×

 

60.27R

 

 

 

 

mean orbital velocity

 

 

1.03 × 10

3

ms

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

orbital period (sidereal)

 

 

 

27.32166d

 

 

 

 

 

 

 

 

 

 

 

equatorial surface gravity

 

 

 

1.62ms−2

 

 

 

 

=

0.166ge

 

 

 

 

aAbout the Earth.

Planetary dataa

 

M/M

R/R

T (d)

 

P (yr)

 

a(AU)

M

mass

Mercury

0.055

274

0.382

51

58.646

0.240

85

0.387 10

R

equatorial radius

Venusb

0.815

00

0.948

83

243.018

0.615

228

0.723 35

T

rotational period

Earth

1

 

1

 

0.997

27

1.000

04

1.000 00

P

orbital period

Mars

0.107

45

0.532

60

1.025

96

1.880

93

1.523 71

a

mean distance

Jupiter

317.85

11.209

0.413

54

11.861 3

5.202 53

 

 

M

5.9742 × 1024 kg

Saturn b

95.159

9.449

1

0.444

01

29.628 2

9.575 60

R

6.37814 × 106 m

Uranus

14.500

4.007

3

0.718

33

84.746 6

19.293 4

1d

86400s

Neptune

17.204

3.882

6

0.671

25

166.344

30.245 9

1yr

3.15569 × 107 s

Plutob

0.00251

0.187

36

6.387

2

248.348

39.509 0

1AU

1.495979 × 1011 m

aUsing the osculating orbital elements for 1998. Note that P is the instantaneous orbital period, calculated from the planet’s daily motion. The radii of gas giants are taken at 1 atmosphere pressure.

bRetrograde rotation.

9.3 Coordinate transformations (astronomical)

177

 

 

9.3 Coordinate transformations (astronomical)

Time in astronomy

 

Julian day numbera

 

 

 

 

 

 

 

 

JD =D − 32075 + 1461 (Y + 4800 + (M − 14)/12)/4

 

 

+ 367 (M − 2 − (M − 14)/12 12)/12

 

 

− 3 ((Y + 4900 + (M − 14)/12)/100)/4

(9.1)

 

Modified

MJD = JD − 2400000.5

 

 

Julian day

(9.2)

 

number

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Day of

W = (JD + 1) mod 7

(9.3)

 

week

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Local civil

LCT = UTC + TZC + DSC

(9.4)

 

time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Julian

T =

JD − 2451545.5

 

 

(9.5)

 

centuries

 

 

 

36525

 

 

 

 

 

 

 

 

 

 

 

 

 

GMST =6h41m50s.54841

 

 

Greenwich

+ 8640184

s

.812866T

 

 

sidereal

 

 

 

 

+ 0s.093104T 2

 

 

time

 

 

 

 

− 0s.0000062T 3

(9.6)

 

 

 

 

 

 

 

 

 

 

 

 

 

Local

 

 

λ

 

 

 

 

 

sidereal

LST = GMST +

 

 

 

(9.7)

 

 

 

 

time

 

15

 

 

 

JD Julian day number

Dday of month number

Ycalendar year, e.g., 1963

Mcalendar month (Jan=1)

integer multiply

/integer divide

MJD modified Julian day number

Wday of week (0=Sunday, 1=Monday, ... )

LCT

local civil time

UTC

coordinated universal time

TZC

time zone correction

DSC

daylight saving correction

TJulian centuries between 12h UTC 1 Jan 2000 and 0h UTC D/M/Y

GMST Greenwich mean sidereal time at 0h UTC D/M/Y (for later times use

1s = 1.002738 sidereal seconds)

LST

local sidereal time

λ

geographic longitude,

 

degrees east of Greenwich

aFor the Julian day starting at noon on the calendar day in question. The routine is designed around integer arithmetic with “truncation towards zero” (so that −5/3 = −1) and is valid for dates from the onset of the Gregorian calendar, 15 October 1582. JD represents the number of days since Greenwich mean noon 1 Jan 4713 BC. For reference, noon, 1 Jan 2000 = JD2451545 and was a Saturday (W = 6).

Horizon coordinatesa

Hour angle

H = LST − α

 

 

 

 

(9.8)

LST

local sidereal time

 

 

 

 

 

 

H

(local) hour angle

 

 

 

 

 

 

 

 

 

 

 

α

right ascension

 

 

 

sina = sinδ sinφ+ cosδ cosφcosH

(9.9)

 

 

 

9

Equatorial

δ

declination

 

 

 

cosδ sinH

 

a

altitude

 

 

 

to horizon

tanA

 

(9.10)

 

 

 

 

 

 

 

 

A

 

 

 

 

 

 

 

 

 

sinδ cosφ

sinφcosδ cosH

 

 

azimuth (E from N)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φ

observer’s latitude

 

 

 

sinδ = sinasinφ+ cosacosφcosA

(9.11)

 

+

 

+

 

 

Horizon to

 

 

 

+

 

 

 

 

− cosasinA

 

 

 

 

 

A, H

 

 

 

equatorial

tanH

 

(9.12)

 

 

 

 

 

 

 

sinacosφ

sinφcosacosA

 

 

 

 

+

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aConversions between horizon or alt–azimuth coordinates, (a,A), and celestial equatorial coordinates, (δ,α). There are a number of conventions for defining azimuth. For example, it is sometimes taken as the angle west from south rather than east from north. The quadrants for A and H can be obtained from the signs of the numerators and denominators in Equations (9.10) and (9.12) (see diagram).

178 Astrophysics

Ecliptic coordinatesa

 

ε = 2326 21 .45

46 .815T

 

ε

mean ecliptic obliquity

Obliquity of

 

 

 

0 .0006T 2

 

 

 

 

 

T

Julian

centuries since

the ecliptic

 

 

 

 

 

 

 

 

 

 

 

 

b

 

 

 

 

+ 0 .00181T 3

(9.13)

 

J2000.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinβ = sinδ cosε− cosδ sinεsinα

(9.14)

α

right ascension

Equatorial to

δ

declination

ecliptic

tanλ

sinαcosε+ tanδ sinε

 

(9.15)

λ

ecliptic longitude

 

cosα

β

ecliptic latitude

 

 

 

 

 

 

 

 

 

+

 

 

+

 

sinδ = sinβ cosε+ cosβ sinεsinλ

(9.16)

 

 

 

Ecliptic to

 

 

 

 

λ, α+

equatorial

 

 

sinλcosε− tanβ sinε

 

 

 

 

 

 

 

 

 

tanα

 

(9.17)

 

 

 

 

 

 

cosλ

 

 

 

 

 

+

 

 

 

 

 

 

 

 

 

aConversions between ecliptic, (β,λ), and celestial equatorial, (δ,α), coordinates. β is positive above the ecliptic and λ increases eastwards. The quadrants for λ and α can be obtained from the signs of the numerators and denominators in Equations (9.15) and (9.17) (see diagram).

bSee Equation (9.5).

Galactic coordinatesa

Galactic

αg = 19215

 

 

 

 

 

 

 

(9.18)

αg

right ascension of

δg = 2724

 

 

 

 

 

 

 

 

(9.19)

 

north galactic pole

frame

 

 

 

 

 

 

 

 

δg

declination of north

lg = 33

 

 

 

 

 

 

 

 

 

(9.20)

 

 

 

 

 

 

 

 

 

 

 

galactic pole

 

 

 

 

 

 

 

Equatorial

sinb = cosδ cosδg cos(ααg) + sinδ sinδg

(9.21)

lg

ascending node of

to galactic

 

 

 

tanδ cosδg − cos(ααg)sinδg

 

 

galactic plane on

tan(l

lg)

(9.22)

 

equator

 

 

 

 

sin(α

αg)

 

 

 

 

 

 

sinδ = cosbcosδg sin(l lg) + sinbsinδg

(9.23)

δ

declination

Galactic to

α

right ascension

equatorial

tan(α

αg)

 

cos(l lg)

 

lg)

(9.24)

b

galactic latitude

 

 

 

 

 

tanbcosδg

sinδg sin(l

 

l

galactic longitude

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aConversions between galactic, (b,l), and celestial equatorial, (δ,α), coordinates. The galactic frame is defined at epoch B1950.0. The quadrants of l and α can be obtained from the signs of the numerators and denominators in Equations (9.22) and (9.24).

Precession of equinoxesa

 

 

 

 

 

 

 

 

α

right ascension of date

In right

 

 

s

 

s

 

 

α0

right ascension at J2000.0

ascension

α

α0 + (3

.075 + 1

 

.336sinα0 tanδ0)N

(9.25)

N

number of years since

 

 

 

 

 

 

 

 

 

J2000.0

 

 

 

 

 

 

 

 

 

 

In

δ

 

δ0 + (20 .043cosα0)N

(9.26)

δ

declination of date

declination

δ0

declination at J2000.0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aRight ascension in hours, minutes, and seconds; declination in degrees, arcminutes, and arcseconds. These equations are valid for several hundred years each side of J2000.0.