Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

Chapter 7 Electromagnetism

7.1Introduction

The electromagnetic force is central to nearly every physical process around us and is a major component of classical physics. In fact, the development of electromagnetic theory in the nineteenth century gave us much mathematical machinery that we now apply quite generally in other fields, including potential theory, vector calculus, and the ideas of divergence and curl.

It is therefore not surprising that this section deals with a large array of physical quantities and their relationships. As usual, SI units are assumed throughout. In the past electromagnetism has su ered from the use of a variety of systems of units, including the cgs system in both its electrostatic (esu) and electromagnetic (emu) forms. The fog has now all but cleared, but some specialised areas of research still cling to these historical measures. Readers are advised to consult the section on unit conversion if they come across such exotica in the literature.

Equations cast in the rationalised units of SI can be readily converted to the once common Gaussian (unrationalised) units by using the following symbol transformations:

7

Equation conversion: SI to Gaussian units

0 →1/(4π)

µ0 →4π/c2

B B/c

χE →4πχE

χH →4πχH

H cH /(4π)

A A/c

M cM

D D/(4π)

The quantities ρ, J , E , φ, σ, P , r, and µr are all unchanged.

136

Electromagnetism

 

 

7.2 Static fields

Electrostatics

Electrostatic

E = − φ

 

 

 

 

 

 

 

 

 

 

E

electric field

 

 

 

 

 

 

 

 

 

 

 

 

(7.1)

φ

electrostatic

 

 

 

potential

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

potential

 

 

 

 

φa φb = a

b

 

 

= − b

a

 

φa

potential at a

 

 

 

Potential

E · dl

 

E · dl

 

 

 

 

φb

potential at b

 

 

 

di erencea

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.2)

dl

line element

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ

charge density

 

 

 

Poisson’s Equation

 

2

 

 

 

ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φ =

 

 

 

 

 

 

 

 

 

(7.3)

0

permittivity of

 

 

 

(free space)

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

free space

 

 

 

 

φ(r) =

 

 

 

q

 

 

 

 

 

 

 

(7.4)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Point charge at r

4π 0|r r |

 

 

 

 

 

q

point charge

 

 

 

 

E (r) =

 

 

q(r r )

 

 

 

 

 

 

 

(7.5)

 

 

 

 

 

 

 

 

 

 

 

 

4π 0|r r |3

 

 

 

 

 

 

 

 

 

 

 

 

dτ

Field from a

E (r) =

1

 

 

 

ρ(r )(r r )

dτ

(7.6)

dτ

volume element

 

r

 

charge distribution

 

 

r

 

position vector

 

 

 

 

 

 

 

 

(free space)

 

 

 

 

4π 0

 

|

r

r

3

 

 

 

 

of dτ

 

 

 

 

 

 

 

 

 

volume

 

|

 

 

 

 

 

 

 

 

r

 

aBetween points a and b along a path l.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnetostaticsa

Magnetic scalar

 

 

 

 

 

 

 

 

 

 

 

 

φm

magnetic scalar

 

 

 

 

 

 

 

 

B = −µ0 φm

 

 

 

 

 

(7.7)

 

 

potential

 

 

 

 

 

 

 

 

potential

 

 

 

 

 

 

B

magnetic flux

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

φm in terms of the

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solid angle of a

φm =

I

 

 

 

 

 

 

(7.8)

loop solid angle

 

 

 

 

 

 

 

 

generating current

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4π

 

 

 

 

 

 

I

 

current

 

 

 

 

 

 

 

 

loop

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl

line element in

 

 

 

dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Biot–Savart law (the

 

 

µ0I

 

dl

 

(r

r )

 

 

 

the direction of

 

 

 

 

 

 

 

 

 

 

×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

field from a line

B(r) =

 

 

 

 

|

 

3

(7.9)

 

 

the current

 

r

r

 

 

 

 

 

 

 

 

 

 

line

 

 

 

 

 

current)

 

 

 

 

r

|

 

r

position vector of

 

 

 

I

 

 

 

 

4π

 

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dl

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

J

current density

 

 

 

 

 

 

 

 

Ampere’s`

law

×B = µ0J

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.10)

µ0

permeability of

 

 

 

 

 

 

 

 

(di erential form)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

free space

 

 

 

 

 

 

 

 

Ampere’s` law (integral

B · dl = µ0Itot

 

 

 

 

(7.11)

I

tot

total current

 

 

 

 

 

 

 

 

form)

 

 

 

 

 

 

through loop

 

 

 

 

 

 

 

 

aIn free space.

7.2 Static fields

137

 

 

Capacitancea

Of sphere, radius a

C = 4π 0 ra

 

 

 

 

(7.12)

 

 

 

 

 

 

 

 

 

 

 

Of circular disk, radius a

C = 8 0 ra

 

 

 

 

 

 

(7.13)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of two spheres, radius a, in

C = 8π 0 raln2

 

 

 

(7.14)

contact

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of circular solid cylinder,

C [8 + 4.1(l/a)

0.76

] 0 ra

(7.15)

radius a, length l

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of nearly spherical surface,

C

 

3.139

×

 

10−11

rS1/2

(7.16)

area S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of cube, side a

C

 

7.283

×

 

10−11

ra

(7.17)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Between concentric spheres,

C = 4π 0 rab(b

a)−1

(7.18)

radii a < b

 

 

 

 

 

 

 

 

 

 

 

Between coaxial cylinders,

C =

2π 0 r

 

per unit length

(7.19)

radii a < b

ln(b/a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C =

π 0 r

 

 

per unit length

(7.20)

Between parallel cylinders,

arcosh(d/a)

 

separation 2d, radii a

 

 

π 0 r

 

(d a)

(7.21)

 

 

ln(2d/a)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Between parallel, coaxial

 

 

 

0 rπa2

 

 

 

 

 

 

 

circular disks, separation d,

C

 

+ 0 ra[ln(16πa/d) − 1]

(7.22)

 

d

 

 

radii a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor conductors, in an embedding medium of relative permittivity r.

7

Inductancea

Of N-turn solenoid

L = µ0N2A/l

 

 

 

(straight or toroidal),

 

 

(7.23)

length l, area A ( l2)

 

 

 

 

 

 

 

 

 

 

 

 

Of coaxial cylindrical

 

µ0

 

b

 

 

 

 

 

tubes, radii a, b (a < b)

L =

 

 

ln

 

 

 

 

per unit length

(7.24)

2π

a

 

 

 

 

 

 

 

 

 

 

 

 

 

Of parallel wires, radii a,

L

µ0

ln

2d

 

 

 

per unit length, (2d a)

(7.25)

separation 2d

π

 

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Of wire of radius a bent in

 

 

 

 

 

 

 

8b

 

a loop of radius b a

L µ0b ln

 

 

 

− 2

(7.26)

 

a

 

aFor currents confined to the surfaces of perfect conductors in free space.

138

Electromagnetism

 

 

Electric fieldsa

 

E (r) =

 

q

 

 

 

r

(r < a)

 

Uniformly charged sphere,

 

 

 

 

 

 

 

a3

 

radius a, charge q

4πq0

 

 

 

 

 

 

 

 

 

 

(7.27)

 

 

 

 

 

 

 

 

r (r

 

 

a)

 

 

 

 

4π

r3

 

 

 

Uniformly charged disk,

 

 

q 0

 

z

1

 

1

 

radius a, charge q (on axis,

E (z) =

 

 

 

 

 

 

2π 0a2

|z|

 

z2 + a2

z)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.28)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Line charge, charge density

E (r) =

 

 

 

λ

 

 

 

 

 

 

 

 

 

 

(7.29)

λ per unit length

 

 

 

r

 

 

 

 

 

 

2π 0r2

 

 

 

 

 

 

Electric dipole, moment p

Er =

pcosθ

 

 

 

 

 

 

 

 

 

 

 

(7.30)

(spherical polar

2π 0r3

 

 

 

 

 

 

 

 

 

 

coordinates, θ angle

Eθ =

psinθ

 

 

 

 

 

 

 

 

 

 

(7.31)

between p and r)

 

 

 

 

 

 

 

 

 

 

 

 

 

4π 0r3

 

 

 

 

 

 

 

 

 

 

Charge sheet, surface

E =

 

σ

 

 

 

 

 

 

 

 

 

 

 

 

(7.32)

density σ

2 0

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor r = 1 in the surrounding medium.

r

θ

+

p

Magnetic fieldsa

Uniform infinite solenoid,

 

µ0nI inside (axial)

 

 

current I, n turns per unit

 

 

 

B = "0

 

 

outside

 

 

 

(7.33)

length

 

 

 

 

 

Uniform cylinder of

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

µ0Ir/(2πa )

r < a

(7.34)

current I, radius a

B(r) = "µ0I/(2πr)

 

r

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnetic dipole, moment

Br = µ0

 

mcosθ

 

 

 

 

(7.35)

 

 

 

 

 

 

 

 

 

 

 

2πr3

 

 

 

 

 

 

 

m (θ angle between m and

 

µ0msinθ

 

 

 

 

 

 

 

r)

Bθ =

 

 

 

 

 

(7.36)

 

 

 

 

 

 

 

 

 

 

 

4πr3

 

 

 

 

 

 

 

 

 

 

Circular current loop of N

 

 

µ0NI

 

 

a

2

 

 

 

 

B(z) =

 

 

 

 

 

 

(7.37)

 

 

 

 

 

 

 

turns, radius a, along axis, z

2

 

 

(a2 + z2)3/2

 

 

 

 

 

 

 

 

 

The axis, z, of a straight

 

 

µ0nI

 

 

 

 

 

 

 

 

 

 

solenoid, n turns per unit

Baxis =

(cosα1 − cosα2)

(7.38)

2

length, current I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor µr = 1 in the surrounding medium.

r

θ m

α2 α1 z

Image charges

 

Real charge, +q, at a distance:

image point

image charge

 

 

 

 

 

 

 

b from a conducting plane

b

q

 

 

b from a conducting sphere, radius a

a2/b

qa/b

 

 

b from a plane dielectric boundary:

 

 

 

 

seen from free space

b

q( r − 1)/( r + 1)

 

 

seen from the dielectric

b

+2q/( r + 1)

 

 

 

 

 

 

7.3 Electromagnetic fields (general)

139

 

 

7.3 Electromagnetic fields (general)

Field relationships

Conservation of

 

∂ρ

 

 

 

 

 

 

 

 

 

 

 

 

J

current density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

charge density

charge

· J = − ∂t

 

 

 

 

 

 

 

 

 

 

 

(7.39)

ρ

 

 

 

 

 

 

 

 

 

 

 

t

 

time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Magnetic vector

B = ×A

 

 

 

 

 

 

 

 

 

 

 

 

(7.40)

A

vector potential

potential

 

 

 

 

 

 

 

 

 

 

 

 

Electric field from

∂A

φ

 

 

 

 

 

 

 

 

 

 

φ

electrical

 

potentials

E = −

∂t

 

 

 

 

 

 

 

 

 

(7.41)

 

 

potential

 

Coulomb gauge

· A = 0

 

 

 

 

 

 

 

 

 

 

 

 

(7.42)

 

 

 

 

condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lorenz gauge

 

1 ∂φ

 

 

 

 

 

 

 

 

 

 

 

 

 

speed of light

condition

· A + c2

∂t = 0

 

 

 

 

 

 

 

 

 

(7.43)

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 2φ

 

2

 

ρ

 

 

 

 

 

 

 

 

 

 

 

 

 

dτ

Potential field

c2 ∂t2

φ = 0

 

 

 

 

 

 

 

 

 

(7.44)

 

 

r

 

equationsa

1 2A

 

2

A = µ0J

 

 

 

 

 

 

 

 

(7.45)

 

 

r

 

c2 ∂t2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Expression for φ

φ(r,t) =

1

 

ρ(r ,t− |r r |/c) dτ

(7.46)

dτ

volume element

 

r

 

position vector of

in terms of ρa

 

4π 0

 

 

 

 

|

r

r

|

 

 

dτ

 

 

 

 

volume

 

 

 

 

 

 

 

 

 

 

Expression for A

A(r,t) = µ0

 

J (r

,t− |r r |/c) dτ

(7.47)

µ0

permeability of

in terms of J a

 

4π

 

 

|

r

r

|

 

 

 

 

free space

 

 

 

volume

 

 

 

 

 

 

 

 

7

aAssumes the Lorenz gauge.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lienard´–Wiechert potentialsa

 

 

 

 

 

q

charge

Electrical potential of

 

q

r

vector from charge

φ =

(7.48)

to point of

 

 

a moving point charge

 

4π 0(|r| − v · r/c)

observation

 

 

 

v

particle velocity

Magnetic vector

 

µ0qv

 

q

potential of a moving

A =

(7.49)

v

 

4π(|r| − v

r

point charge

 

· r/c)

aIn free space. The right-hand sides of these equations are evaluated at retarded times, i.e., at t = t− |r |/c, where r is the vector from the charge to the observation point at time t .

140 Electromagnetism

Maxwell’s equations

 

Di erential form:

 

 

Integral form:

 

 

 

 

 

 

 

 

 

 

·

E =

ρ

(7.50)

 

E

· ds =

 

1

 

 

 

 

ρ dτ

 

 

 

 

(7.51)

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

closed surface

 

volume

 

 

 

 

 

 

 

 

·

B = 0

(7.52)

 

B · ds = 0

 

 

 

 

 

 

 

 

 

 

 

(7.53)

 

 

 

 

 

 

 

 

 

closed surface

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×E = −

∂B

 

 

loop E · dl = −

 

 

 

 

 

 

(7.55)

 

(7.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

 

 

∂t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂E

 

 

B

·

dl = µ0I + µ0 0

 

∂E

·

ds (7.57)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×B = µ0J + µ0 0 ∂t

(7.56)

 

loop

 

 

 

 

 

 

 

 

surface

∂t

 

 

 

Equation (7.51) is “Gauss’s law”

ds

surface element

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Equation (7.55) is “Faraday’s law”

dτ

volume element

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

 

electric field

 

dl

line element

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B

 

magnetic flux density

 

Φ

linked magnetic flux (=

B

·

ds)

 

 

 

J

 

current density

 

I

linked current (=

 

J

·

ds%)

 

 

 

 

 

 

ρ

 

charge density

 

t

time

 

 

%

 

 

 

 

 

 

 

 

 

 

 

Maxwell’s equations (using D and H )

Di erential form:

 

 

 

Integral form:

 

 

 

 

 

 

 

·

D = ρfree

(7.58)

 

 

D · ds =

 

 

ρfree dτ

 

 

 

 

(7.59)

 

 

 

 

 

 

 

 

closed surface volume

 

 

 

 

 

 

 

·

B = 0

(7.60)

 

 

B · ds = 0

 

 

 

 

 

 

 

 

 

(7.61)

 

 

 

 

 

 

 

 

closed surface

 

 

 

 

 

 

 

 

 

 

 

×E = −

∂B

 

 

 

loop E · dl = −

 

 

 

 

 

 

(7.63)

(7.62)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

 

 

 

 

 

 

 

∂t

 

 

 

 

 

 

 

 

 

 

 

 

∂D

 

 

 

 

I

+

 

∂D

ds

(7.65)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

×H = J free +

∂t

 

(7.64)

 

 

loop H · dl =

 

free surface

∂t ·

 

 

D

displacement field

 

E

electric field

 

 

 

 

 

 

 

 

 

 

 

ρfree

free charge density (in the sense of

ds

surface element

 

 

 

 

 

 

 

 

 

 

 

 

ρ = ρinduced + ρfree)

 

dτ

volume element

 

 

 

 

 

 

 

 

 

 

 

B

magnetic flux density

 

dl

line element

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

magnetic field strength

 

Φ

linked magnetic flux (=

B · ds)

 

 

J free

free current density (in the sense of

 

 

I

free linked free current (=

J

 

ds)

 

 

 

 

 

 

 

 

 

 

%free

·

 

 

 

 

 

J = J induced + J free)

 

t

 

time

 

%

 

 

 

 

 

 

7.3 Electromagnetic fields (general)

141

 

 

Relativistic electrodynamics

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E

electric field

 

 

Lorentz

E

 

= E

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.66)

B

magnetic flux density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

measured in frame moving

transformation of

E

 

= γ(E + v

×

B)

 

 

 

(7.67)

 

 

 

at relative velocity v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

electric and

B

= B

 

 

 

 

 

 

 

 

 

 

 

 

 

(7.68)

γ

Lorentz factor

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

]

1/2

magnetic fields

B

= γ(B

v

×

E /c2)

 

(7.69)

 

= [1 − (v/c)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

parallel to v

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

perpendicular to v

Lorentz

ρ = γ(ρ

vJ /c2)

 

 

(7.70)

 

 

 

 

transformation of

J

= J

 

 

 

 

 

 

 

 

 

(7.71)

J

current density

current and charge

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ρ

charge density

 

densities

J = γ(J

)

 

 

 

(7.72)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lorentz

φ = γ(φvA )

 

 

 

(7.73)

φ

electric potential

transformation of

A

= A

 

 

 

 

 

 

 

 

 

 

 

 

(7.74)

A

magnetic vector potential

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

potential fields

A

= γ(A vφ/c2)

 

(7.75)

 

 

 

 

 

J = (ρc,J )

 

 

 

 

 

 

 

 

(7.76)

 

 

 

 

 

 

 

 

 

φ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A =

,A

 

 

 

 

 

(7.77)

J

current density four-vector

 

c

 

 

 

 

 

Four-vector fieldsa

 

 

 

 

 

 

 

 

 

 

 

 

 

 

potential four-vector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

 

 

2

=

1

 

 

2

,2

 

(7.78)

2

D’Alembertian operator

 

 

 

c2

 

∂t2

 

 

 

2A = µ0J

 

 

 

 

 

 

 

 

(7.79)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aOther sign conventions are common here. See page 65 for a general definition of four-vectors.

7