Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

Chapter 4 Quantum physics

4.1 Introduction

 

Quantum ideas occupy such a pivotal position in physics that di erent notations and algebras

 

4

appropriate to each field have been developed. In the spirit of this book, only those formulas

 

that are commonly present in undergraduate courses and that can be simply presented in

 

tabular form are included here. For example, much of the detail of atomic spectroscopy and of

 

specific perturbation analyses has been omitted, as have ideas from the somewhat specialised

 

 

field of quantum electrodynamics. Traditionally, quantum physics is understood through

 

standard “toy” problems, such as the potential step and the one-dimensional harmonic

 

oscillator, and these are reproduced here. Operators are distinguished from observables using

 

the “hat” notation, so that the momentum observable, px, has the operator pˆx = −i¯h∂/∂x.

 

For clarity, many relations that can be generalised to three dimensions in an obvious way

 

have been stated in their one-dimensional form, and wavefunctions are implicitly taken as

 

normalised functions of space and time unless otherwise stated. With the exception of the

 

last panel, all equations should be taken as nonrelativistic, so that “total energy” is the sum

 

of potential and kinetic energies, excluding the rest mass energy.

 

90

Quantum physics

 

 

4.2Quantum definitions

Quantum uncertainty relations

 

p =

h

 

 

 

 

 

 

 

 

 

 

 

 

(4.1)

p,p

particle momentum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

De Broglie relation

λ

 

 

 

 

 

 

 

 

 

 

 

 

h

Planck constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯h

h/(2π)

 

p = ¯hk

 

 

 

 

 

 

 

 

 

 

 

(4.2)

 

 

 

 

 

 

 

 

 

 

 

 

 

de Broglie wavelength

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

k

de Broglie wavevector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Planck–Einstein

E = = ¯

 

 

 

 

 

 

(4.3)

E

energy

relation

 

 

 

 

 

 

ν

frequency

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ω

angular frequency (= 2πν)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

observablesb

 

(∆a)

2

= (a

a )

2

 

 

(4.4)

a,b

Dispersiona

 

 

 

 

·

expectation value

 

 

 

 

=

 

a2

a 2

 

 

(4.5)

dispersion of a

 

 

 

 

 

 

 

 

 

 

 

 

 

(∆a)2

General uncertainty

 

 

2

 

 

 

2

1

i[a,ˆ

ˆ

2

 

aˆ

operator for observable a

relation

(∆a)

 

(∆b)

 

 

 

b]

 

(4.6)

,·]

 

 

 

 

4

 

commutator (see page 26)

Momentum–position

 

 

 

 

¯h

 

 

 

 

 

 

 

 

x

particle position

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertainty relationc

px 2

 

 

 

 

 

 

 

(4.7)

 

 

 

 

 

 

 

 

 

Energy–time

 

 

 

 

 

¯h

 

 

 

 

 

 

 

 

t

time

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uncertainty relation

E t 2

 

 

 

 

 

 

 

(4.8)

 

 

 

 

 

 

 

 

 

Number–phase

nφ

1

 

 

 

 

 

 

 

 

(4.9)

n

number of photons

uncertainty relation

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

φ

wave phase

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aDispersion in quantum physics corresponds to variance in statistics. bAn observable is a directly measurable parameter of a system.

cAlso known as the “Heisenberg uncertainty relation.”

Wavefunctions

Probability

pr(x,t) dx = |ψ(x,t)|

2

dx

 

 

(4.10)

pr

probability density

density

 

 

 

 

ψ

wavefunction

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

¯h

 

 

 

 

 

∂ψ

 

 

 

∂ψ

 

 

 

j ,j probability density current

 

 

j(x) =

 

 

 

ψ

 

 

 

ψ

 

(4.11)

¯h

(Planck constant)/(2π)

 

 

 

 

 

 

 

 

∂x

 

 

Probability

 

 

 

¯h

2im

 

 

∂x

 

 

x

position coordinate

density

 

j =

 

 

 

 

 

ψ (r) ψ(r)

 

ψ(r)

ψ (r)

 

(4.12)

pˆ

momentum operator

 

 

 

 

 

 

 

 

current

a

 

2im

#

 

 

 

 

 

 

 

 

 

$

 

m

particle mass

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

(ψ pˆ ψ)

 

 

 

 

 

 

(4.13)

 

real part of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t

time

Continuity

· j =

(ψψ )

 

 

 

 

 

 

(4.14)

 

 

equation

 

 

 

 

 

 

 

 

 

∂t

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Schrodinger¨

ˆ

 

 

∂ψ

 

 

 

 

 

 

 

 

(4.15)

 

 

equation

= i¯h

 

 

∂t

 

 

 

 

 

 

 

 

 

H

Hamiltonian

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Particle

 

¯h2 2ψ(x)

 

 

 

 

 

 

 

 

 

V

potential energy

stationary

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2m

∂x2

 

 

+ V (x)ψ(x) = (x)

 

(4.16)

E

total energy

statesb

 

 

 

 

aFor particles. In three dimensions, suitable units would be particles m−2 s−1. bTime-independent Schrodinger¨ equation for a particle, in one dimension.

4.2 Quantum definitions

91

 

 

Operators

Hermitian

(ˆ ) ψ dx = φ aψˆ dx

 

aˆ

 

Hermitian conjugate

 

 

conjugate

(4.17)

 

 

operator

 

 

operator

ψ,φ

normalisable functions

 

 

Position

xˆn = xn

 

 

 

 

 

 

 

(4.18)

 

 

complex conjugate

 

 

operator

 

 

 

 

 

 

 

 

 

 

 

 

 

 

x,y

position coordinates

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Momentum

pˆn

 

=

¯hn

 

n

 

 

 

(4.19)

n

 

arbitrary integer ≥ 1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operator

x

 

 

 

in

∂xn

 

 

 

 

px

momentum coordinate

 

 

 

 

 

 

 

 

 

 

 

 

Kinetic energy

 

 

 

 

 

¯h2 2

 

 

T

kinetic energy

 

 

ˆ

=

 

(4.20)

¯h

 

(Planck constant)/(2π)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

operator

T

2m ∂x2

 

m

particle mass

 

 

Hamiltonian

ˆ

 

 

 

 

¯h2 2

 

 

H

Hamiltonian

 

 

 

 

 

 

 

4

operator

H

=

 

 

 

+ V (x)

(4.21)

 

 

potential energy

 

2m

∂x2

V

 

 

Angular

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

L

 

angular momentum along

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

momentum

Lz = xpˆ ˆy ypˆ ˆx

ˆ 2

(4.22)

 

z

z axis (sim. x and y)

 

 

ˆ2

 

 

ˆ

2

 

 

 

ˆ 2

 

 

 

 

 

 

operators

L

 

= Lx

 

+ Ly

+ Lz

(4.23)

L

 

total angular momentum

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

 

parity operator

 

 

 

ˆ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

Parity operator

P ψ(r) = ψ(−r)

 

(4.24)

r

 

position vector

 

 

Expectation value

Expectation

 

a =

 

aˆ = Ψ aˆ

Ψ dx

(4.25)

a

expectation value of a

aˆ

operator for a

valuea

 

 

 

 

 

 

 

 

 

 

 

Ψ

(spatial) wavefunction

 

 

 

 

 

= Ψ|aˆ|Ψ

 

 

 

 

 

(4.26)

x

(spatial) coordinate

Time

 

d

 

 

 

 

i

 

-

∂aˆ

 

t

time

dependence

 

 

 

aˆ

=

 

[H,aˆ ˆ] +

 

.

(4.27)

¯h

(Planck constant)/(2π)

 

dt

¯h

∂t

 

if

ˆ

n = anψn and

Ψ =

cnψn

ψn

eigenfunctions of aˆ

Relation to

a

eigenvalues

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

eigenfunctions

 

 

 

 

 

 

 

 

 

 

2

 

 

nn

dummy index

 

then

 

a = |cn|

 

an

(4.28)

cn

probability amplitudes

 

 

 

 

 

d

 

 

 

 

 

 

 

 

 

 

m

particle mass

Ehrenfest’s

m

 

r

= p

 

 

 

 

 

(4.29)

 

 

dt

 

 

 

 

 

r

position vector

theorem

 

d

p

 

= − V

 

 

 

 

 

(4.30)

p

momentum

 

 

 

 

 

 

 

 

 

 

potential energy

 

 

dt

 

 

 

 

 

 

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aEquation (4.26) uses the Dirac “bra-ket” notation for integrals involving operators. The presence of vertical bars distinguishes this use of angled brackets from that on the left-hand side of the equations. Note that a and aˆ are taken as equivalent.

92 Quantum physics

Dirac notation

 

anm = ψnˆ m dx

 

n,m

eigenvector indices

 

(4.31)

anm

matrix element

Matrix elementa

ψn

basis states

 

= n|aˆ|m

 

(4.32)

aˆ

operator

 

 

 

 

 

 

x

spatial coordinate

Bra vector

bra state vector = n|

(4.33)

·|

bra

 

 

 

 

 

Ket vector

ket state vector = |m

(4.34)

ket

 

 

 

 

 

Scalar product

n|m = ψnψm dx

(4.35)

 

 

Expectation

if Ψ = n cnψn

 

(4.36)

Ψ

wavefunction

 

 

 

 

 

cn

probability amplitudes

 

then

 

a =

c cmanm

(4.37)

 

 

 

n

 

 

 

 

 

 

m

n

 

 

 

 

 

 

 

 

 

 

 

aThe Dirac bracket, n|aˆ|m , can also be written ψn|aˆ|ψm .

4.3 Wave mechanics

Potential stepa

V (x)

 

incident particle

 

V0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

 

ii

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Potential

 

 

 

 

 

0 (x < 0)

 

 

V

particle potential energy

 

 

 

 

 

 

 

V

step height

function

V (x) = "V0

(x

 

0)

 

(4.38)

 

¯h 0

(Planck constant)/(2π)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Wavenumbers

¯h2k2 = 2mE

 

 

 

(x < 0)

(4.39)

k,q

particle wavenumbers

¯h2q2 = 2m(E V0)

(x > 0)

(4.40)

m

particle mass

 

E

total particle energy

Amplitude

 

k q

 

 

 

 

 

 

 

 

r

amplitude reflection

reflection

r =

 

 

 

 

 

 

(4.41)

 

 

 

 

 

 

 

coe cient

coe cient

 

k + q

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude

 

 

2k

 

 

 

 

 

 

 

 

 

 

t

amplitude transmission

transmission

t =

 

 

 

 

 

 

 

 

 

(4.42)

k + q

 

 

 

 

 

 

 

 

coe cient

coe cient

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ji =

¯hk

 

(1 − |r|2)

 

 

 

(4.43)

 

 

 

Probability

 

 

 

 

 

 

 

m

 

 

 

ji

particle flux in zone i

currentsb

jii =

¯hq

 

|t|2

 

 

 

 

 

(4.44)

jii

particle flux in zone ii

 

m

 

 

 

 

 

 

 

 

 

aOne-dimensional interaction with an incident particle of total energy E = KE + V . If E < V0 then q is imaginary

and

|

r

2

= 1. 1

/

q

| is then a measure of the tunnelling depth.

b

 

|

 

|

 

 

Particle flux with the sign of increasing x.

4.3 Wave mechanics

93

 

 

Potential wella

 

incident particle

 

 

 

 

 

 

 

 

 

 

 

 

V (x)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i

a ii

 

a iii

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V (x) = "0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

particle potential energy

 

 

Potential

 

 

( x

 

> a)

 

 

 

 

 

V0

well depth

 

 

function

V0

(|x|

 

 

 

a)

 

 

 

(4.45)

 

¯h

(Planck constant)/(2π)

 

 

 

 

 

 

 

 

 

 

 

| | ≤

 

 

 

 

 

 

2a

well width

 

 

 

¯h

2

k

2

= 2mE

 

 

 

 

 

 

 

(|x| > a)

 

(4.46)

 

k,q

particle wavenumbers

 

 

Wavenumbers

 

 

 

 

 

 

 

 

 

 

 

m

particle mass

 

 

 

¯h2q2 = 2m(E + V0)

 

 

(|x| < a)

 

(4.47)

 

E

total particle energy

 

4

Amplitude

 

 

 

 

 

 

ie−2ika(q2

k2)sin2qa

 

 

 

r

amplitude reflection

 

reflection

r =

 

 

 

 

(4.48)

 

 

 

 

 

 

 

 

 

 

 

 

 

2

+ k

2

)sin2qa

 

 

 

 

coe cient

 

 

coe cient

 

 

 

2kqcos2qa− i(q

 

 

 

 

 

 

 

 

 

 

Amplitude

 

 

 

 

 

 

 

 

2kqe−2ika

 

 

 

 

 

t

amplitude transmission

 

 

transmission

 

 

 

 

 

 

 

 

 

 

 

(4.49)

 

 

 

t = 2kqcos2qa− i(q2 + k2)sin2qa

 

 

 

 

coe cient

 

 

coe cient

 

 

 

 

 

 

 

ji =

 

¯hk

(1 − |r|2)

 

 

 

 

 

 

 

 

 

 

 

 

(4.50)

 

 

 

 

 

 

Probability

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

ji

particle flux in zone i

 

 

currentsb

jiii =

 

¯hk

|t|2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.51)

 

jiii

particle flux in zone iii

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ramsauer

 

 

 

 

 

 

 

n2¯h2π2

 

 

 

 

 

 

 

 

 

 

n

integer > 0

 

 

e ectc

En =

V0 +

 

 

 

 

 

 

 

 

 

 

(4.52)

 

 

Ramsauer energy

 

 

8ma2

 

 

 

 

 

 

 

 

 

En

 

 

 

tanqa = "|

k /q

 

 

 

 

 

 

even parity

 

 

 

 

 

 

 

 

Bound states

 

|q/

k

|

 

 

 

odd parity

 

(4.53)

 

 

 

 

 

 

(V0 < E < 0)d

 

 

 

 

 

 

− |

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

q2 − |k|2 = 2mV0/¯h2

 

 

 

 

 

 

 

 

(4.54)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aOne-dimensional interaction with an incident particle of total energy E = KE + V > 0.

 

 

 

bParticle flux in the sense of increasing x.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dIncident energy for which 2qa = , |r| = 0, and |t| = 1.

 

 

 

 

 

 

 

 

 

 

When E < 0, k is purely imaginary. |k|

and q are obtained by solving these implicit equations.

 

94 Quantum physics

Barrier tunnellinga

incident particle

 

V (x)

 

V0

 

 

 

 

 

 

 

 

 

i

 

ii

 

iii

 

 

 

 

 

 

 

 

a

0

a

x

Potential

 

 

 

 

 

 

 

0

( x

> a)

 

 

 

(4.55)

function

V (x) = "V0

(|x|

 

 

a)

 

 

 

 

 

 

 

 

 

 

 

 

 

| | ≤

 

 

 

 

 

 

Wavenumber

¯h

2

k

2

= 2mE

 

 

 

 

(|x| > a)

(4.56)

and tunnelling

 

 

 

 

 

 

constant

¯h2κ2 = 2m(V0 E)

 

(|x| < a)

(4.57)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Amplitude

r =

 

 

 

ie−2ika(k2

+ κ2)sinh2κa

 

reflection

 

 

 

 

 

 

 

 

 

2

2

 

 

 

coe cient

 

 

 

2cosh2κa− i(k

 

κ

)sinh2κa

(4.58)

Amplitude

 

 

 

 

 

 

 

 

 

2e−2ika

 

 

 

transmission

 

 

 

 

 

 

 

 

 

 

 

(4.59)

t = 2cosh2κa− i(k2 κ2)sinh2κa

coe cient

 

|t|2 =

 

 

 

 

 

4k2κ2

 

 

 

(4.60)

Tunnelling

(k2 + κ2)2 sinh2 2κa+ 4k2κ2

 

 

 

 

 

 

16k2κ2

 

 

 

 

 

 

 

 

 

 

probability

 

 

 

 

 

exp(−4κa)

(|t|2 1)

 

 

 

 

(k2 + κ2)2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.61)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ji =

 

¯hk

(1 − |r|2)

 

 

 

 

 

 

 

(4.62)

Probability

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

currentsb

jiii =

 

¯hk

|t|2

 

 

 

 

 

 

 

 

 

(4.63)

 

 

m

 

 

 

 

 

 

 

 

 

Vparticle potential energy

V0

well depth

¯h

(Planck constant)/(2π)

2a

barrier width

kincident wavenumber

κtunnelling constant

mparticle mass

Etotal energy (< V0)

ramplitude reflection coe cient

tamplitude transmission coe cient

|t|2 tunnelling probability

ji

particle flux in zone i

jiii

particle flux in zone iii

aBy a particle of total energy E = KE + V , through a one-dimensional rectangular potential barrier height V0 > E. bParticle flux in the sense of increasing x.

Particle in a rectangular boxa

Eigen-

8

 

 

 

1/2

 

 

lπx

mπy

 

nπz

Ψlmn

eigenfunctions

 

 

 

functions

Ψlmn =

 

 

 

 

 

sin

 

 

 

sin

 

sin

 

 

a,b,c

box dimensions

 

 

 

abc

 

 

 

a

b

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(4.64)

l,m,n

integers ≥ 1

 

 

a

Energy

 

h2

 

 

l2

m2

 

 

n2

 

 

 

 

Elmn

energy

x

 

b

 

 

 

 

 

 

 

 

 

h

Planck

 

z

 

 

Elmn =

 

 

 

 

+

 

 

+

 

 

 

(4.65)

 

 

 

 

levels

8M

a2

b2

 

c2

 

M

constant

y

 

c

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

particle mass

 

 

 

Density of

 

 

 

4π

 

(2M3E)1/2 dE

 

 

 

 

ρ(E)

density of

 

 

 

ρ(E) dE =

 

 

(4.66)

 

states (per unit

 

 

 

states

h3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSpinless particle in a rectangular box bounded by the planes x = 0, y = 0, z = 0, x = a, y = b, and z = c. The potential is zero inside and infinite outside the box.