Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

168

Optics

 

 

8.5 Geometrical optics

Lenses and mirrorsa

r2

 

 

 

v

 

 

 

 

 

 

 

object

 

 

f

 

x1

 

 

 

 

 

 

 

 

 

 

object

 

 

f

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

v

 

 

 

 

 

 

 

image

 

 

R

x2

f

 

 

r1

 

 

 

 

 

 

 

 

 

 

 

 

u

 

 

 

 

 

 

 

 

 

 

 

 

 

lens

 

 

 

 

mirror

 

 

 

 

 

sign convention

 

 

 

 

 

 

 

 

+

 

 

 

 

 

r

 

centred to right

 

centred to left

 

 

 

 

u

 

real object

 

 

virtual object

 

 

 

 

v

 

real image

 

 

virtual image

 

 

 

 

f

 

converging lens/

diverging lens/

 

 

 

 

 

concave mirror

 

convex mirror

 

 

 

 

 

 

 

 

 

 

 

MT

erect image

 

inverted image

 

 

 

 

 

L = η dl

 

 

 

 

L

optical path length

 

b

 

 

 

 

η

refractive index

Fermat’s principle

is stationary

(8.63)

dl

ray path element

 

 

1

+ 1

= 1

 

 

 

 

u

object distance

Gauss’s lens formula

 

 

 

(8.64)

v

image distance

 

 

u

v

f

 

 

 

 

f

focal length

 

 

 

 

 

 

 

 

 

Newton’s lens

 

x1x2 = f2

 

 

 

(8.65)

x1

= v f

formula

 

 

 

 

 

 

 

 

x2

= uf

Lensmaker’s

 

1

1

= (η − 1)

1

1

 

r

 

radii of curvature of

formula

 

u

+ v

r1

r2

(8.66)

 

i

lens surfaces

Mirror formulac

 

1

1

2

 

1

 

 

R

mirror radius of

 

u + v = − R = f

 

(8.67)

 

 

 

 

 

curvature

Dioptre number

 

 

1

m−1

 

 

 

D

dioptre number (f in

 

D = f

 

 

(8.68)

 

 

metres)

Focal ratiod

 

n = f

 

 

 

 

(8.69)

n

focal ratio

 

 

 

d

 

 

 

 

 

d

lens or mirror diameter

Transverse linear

 

 

 

v

 

 

 

 

MT

transverse

magnification

 

MT =

u

 

 

 

(8.70)

 

 

magnification

Longitudinal linear

 

 

2

 

 

 

 

ML

longitudinal

magnification

 

ML =

MT

 

 

 

(8.71)

 

 

magnification

aFormulas assume “Gaussian optics,” i.e., all lenses are thin and all angles small. Light enters from the left. bA stationary optical path length has, to first order, a length identical to that of adjacent paths.

cThe mirror is concave if R < 0, convex if R > 0. dOr “f-number,” written f/2 if n = 2 etc.

8.5 Geometrical optics

169

 

 

Prisms (dispersing)

αδ

 

 

 

 

θi

θt

 

 

 

 

 

 

 

 

prism

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sinθt =(η2 − sin2 θi)1/2 sinα

 

 

 

θi

angle of incidence

Transmission

 

 

 

θt

angle of transmission

angle

 

 

 

− sinθi cosα

 

 

(8.72)

α

apex angle

 

 

 

 

 

 

η

refractive index

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Deviation

δ = θi + θt α

 

 

(8.73)

δ

angle of deviation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Minimum

 

 

 

 

 

 

α

 

 

 

 

 

deviation

sinθi = sinθt = ηsin

 

 

(8.74)

 

 

 

 

 

 

 

 

 

2

 

 

 

 

condition

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refractive

η =

sin[(δm + α)/2]

 

 

 

 

(8.75)

δm

minimum deviation

index

 

 

sin(α/2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Angular

D =

dδ

=

2sin(α/2)

dη

(8.76)

D

dispersion

dispersiona

 

 

 

 

 

 

wavelength

dλ

cos[(δm + α)/2]

dλ

λ

aAt minimum deviation.

Optical fibres

 

 

 

 

 

 

L

 

 

 

 

 

θm

 

 

 

 

 

 

 

 

 

 

 

cladding, ηc < ηf

fibre, ηf

 

 

8

 

 

 

 

 

 

 

 

θm

maximum angle of incidence

Acceptance angle

 

1

 

2

2 1/2

 

η0

exterior refractive index

 

sinθm = η0

(ηf ηc )

 

(8.77)

ηf

fibre refractive index

 

 

 

 

 

 

 

 

 

 

 

 

ηc

cladding refractive index

 

Numerical

N = η0 sinθm

 

 

(8.78)

N

numerical aperture

 

aperture

 

 

 

 

 

 

 

 

 

 

 

 

 

Multimode

t

ηf

ηf

 

 

 

t

temporal dispersion

 

 

 

 

L

fibre length

 

dispersiona

L = c ηc − 1

 

(8.79)

 

 

c

speed of light

 

aOf a pulse with a given wavelength, caused by the range of incident angles up to θm. Sometimes called “intermodal dispersion” or “modal dispersion.”

170

Optics

 

 

8.6Polarisation

Elliptical polarisationa

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

E

electric field

 

E0y

 

 

Elliptical

 

 

E = (E0x,E0yeiδ)ei(kzωt)

k

wavevector

 

 

x

 

 

 

z

propagation axis

 

α

 

polarisation

 

 

 

 

(8.80)

 

 

 

 

 

 

 

ωt

angular frequency ×

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

E0x

 

 

 

 

 

 

 

 

 

time

 

 

 

 

 

 

 

 

 

 

 

E0x

x amplitude of E

 

 

 

 

Polarisation

 

tan2α =

2E0xE0y

cosδ

E0y

y amplitude of E

 

b

 

 

 

2

2

δ

relative phase of E

 

a

 

 

angleb

 

 

 

E0x

E0y

(8.81)

 

with respect to Ex

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α

polarisation angle

 

 

 

 

 

 

 

e = aa b

 

 

 

e

ellipticity

 

θ

 

 

Ellipticityc

 

 

 

(8.82)

a

semi-major axis

 

 

 

 

 

 

 

 

 

 

b

semi-minor axis

 

 

 

 

 

 

 

 

 

 

 

I(θ)

transmitted intensity

 

 

 

Malus’s lawd

I(θ) = I0 cos2 θ

(8.83)

I0

incident intensity

 

 

 

 

 

 

 

 

 

 

 

θ

polariser–analyser

 

 

 

 

 

 

 

 

 

 

 

 

angle

 

 

 

aSee the introduction (page 161) for a discussion of sign and handedness conventions.

 

 

bAngle between ellipse major axis and x axis. Sometimes the polarisation angle is

 

 

 

defined as π/2

α.

 

 

 

 

 

 

 

 

 

c

 

 

 

 

 

 

 

 

 

 

 

 

This is one of several definitions for ellipticity.

 

 

 

 

 

dTransmission through skewed polarisers for unpolarised incident light.

 

 

 

Jones vectors and matrices

Normalised

 

Ex

; |E | = 1

 

 

 

 

E

electric field

 

 

 

 

(8.84)

Ey

y component of E

electric fielda

E = Ey

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex

x component of E

 

Ex = 1

 

E45 =

1

1

 

E45

45to x axis

 

 

 

 

1

 

 

2

Example

0

 

Er

right-hand circular

vectors:

1

1

 

1

1

 

 

 

 

Er =

 

−i

El =

 

i

 

El

left-hand circular

 

2

2

 

 

 

 

 

 

 

 

 

 

 

E t

transmitted vector

Jones matrix

E t = AE i

 

 

 

 

(8.85)

E i

incident vector

 

 

 

 

 

 

 

 

 

 

A

Jones matrix

 

 

 

 

 

 

 

 

 

 

 

 

Example matrices:

Linear polariser x

Linear polariser at 45

Right circular polariser

λ/4 plate (fast x)

1 0

00

1 1 1

2

 

1

1

1

1

i

2−i 1

e

iπ/4 1

0

0

i

 

Linear polariser y

Linear polariser at −45

Left circular polariser

λ/4 plate (fast x)

00

01

1 1 −1

2 −1 1

1 1 −i

2 i 1

e

iπ/4 1

0

0

−i

 

aKnown as the “normalised Jones vector.”

8.6 Polarisation

171

 

 

Stokes parametersa

y

 

V

E0y

 

 

χ

 

pI

 

 

α

x

 

Q

2χ

 

 

E0x

2α

 

 

U

2b

Poincare´ sphere

2a

 

 

 

Ex = E0xei(kzωt)

 

 

 

(8.86)

 

k

wavevector

 

 

 

 

 

Electric fields

 

 

 

 

ωt

angular frequency × time

 

 

 

 

 

 

 

i(kz

ωt+δ)

 

 

 

 

 

 

 

 

Ey = E0ye

 

 

 

 

 

 

(8.87)

 

δ

relative phase of Ey with

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

respect to Ex

 

 

 

 

 

Axial ratiob

 

 

 

 

 

 

 

b

 

 

 

 

 

 

 

χ

(see diagram)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

tanχ = ±r = ± a

 

 

 

(8.88)

 

r

axial ratio

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I = Ex2

+ Ey2

 

 

 

(8.89)

 

Ex

electric field component x

 

Q =

 

E2

E2

 

 

 

(8.90)

 

 

 

 

x

 

y

 

 

 

 

 

 

 

Ey

electric field component

 

y

 

= pI cos2χcos2α

(8.91)

 

E0x

 

 

 

 

 

 

 

Stokes

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

field amplitude in x direction

U = 2 ExEy

cosδ

 

 

 

(8.92)

 

E0y

field amplitude in y direction

parameters

 

 

 

 

 

= pI cos2χsin2α

(8.93)

 

α

polarisation angle

 

 

 

 

 

 

V = 2 ExEy

sinδ

 

 

 

(8.94)

 

p

degree of polarisation

 

 

 

 

 

 

 

 

 

·

mean over time

 

 

 

 

 

 

= pI sin2χ

 

 

 

 

 

 

(8.95)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Degree of

 

(Q2 + U2 + V 2)1/2

 

 

 

 

 

 

 

 

 

 

 

 

 

polarisation

p =

 

 

 

 

 

 

 

 

 

≤ 1

(8.96)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8

 

 

 

 

Q/I

U/I

V /I

 

 

 

 

 

 

Q/I

 

U/I

V /I

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

left circular

 

 

 

0

 

0

 

 

−1

 

right circular

 

0

 

0

1

 

 

 

 

linear x

 

 

 

1

 

0

 

 

0

 

 

linear y

 

−1

 

0

0

 

 

 

 

linear 45to x

 

0

 

1

 

 

0

 

 

linear

45to x

0

1

0

 

 

 

 

unpolarised

 

 

 

0

 

0

 

 

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aUsing the convention that right-handed circular polarisation corresponds to a clockwise rotation of the electric field in a given plane when looking towards the source. The propagation direction in the diagram is out of the plane. The parameters I, Q, U, and V are sometimes denoted s0, s1, s2, and s3, and other nomenclatures exist. There is no generally accepted definition – often the parameters are scaled to be dimensionless, with s0 = 1, or to represent power flux through a plane the beam, i.e., I = ( Ex2 + Ey2 )/Z0 etc., where Z0 is the impedance of free space.

bThe axial ratio is positive for right-handed polarisation and negative for left-handed polarisation using our definitions.