Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

Chapter 3 Dynamics and mechanics

3

3.1Introduction

Unusually in physics, there is no pithy phrase that sums up the study of dynamics (the way in which forces produce motion), kinematics (the motion of matter), mechanics (the study of the forces and the motion they produce), and statics (the way forces combine to produce equilibrium). We will take the phrase dynamics and mechanics to encompass all the above, although it clearly does not!

To some extent this is because the equations governing the motion of matter include some of our oldest insights into the physical world and are consequentially steeped in tradition. One of the more delightful, or for some annoying, facets of this is the occasional use of arcane vocabulary in the description of motion. The epitome must be what Goldstein1 calls “the jabberwockian sounding statement” the polhode rolls without slipping on the herpolhode lying in the invariable plane, describing “Poinsot’s construction” – a method of visualising the free motion of a spinning rigid body. Despite this, dynamics and mechanics, including fluid mechanics, is arguably the most practically applicable of all the branches of physics.

Moreover, and in common with electromagnetism, the study of dynamics and mechanics has spawned a good deal of mathematical apparatus that has found uses in other fields. Most notably, the ideas behind the generalised dynamics of Lagrange and Hamilton lie behind much of quantum mechanics.

1H. Goldstein, Classical Mechanics, 2nd ed., 1980, Addison-Wesley.

64 Dynamics and mechanics

3.2 Frames of reference Galilean transformations

 

 

 

 

 

 

 

 

 

S

 

 

 

 

 

 

 

 

r,r

position in frames S

m

Time and

r = r + vt

 

 

 

 

(3.1)

 

and S

S

positiona

t = t

 

 

 

 

(3.2)

v

velocity of S in S

r

r

 

 

 

 

 

 

 

t,t

time in S and S

 

 

 

 

 

 

 

 

vt

 

Velocity

u = u + v

 

 

 

 

(3.3)

u,u

velocity in frames S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and S

 

 

 

p = p + mv

 

 

 

 

 

p,p

particle momentum

 

 

Momentum

 

 

 

 

(3.4)

 

in frames S and S

 

 

 

 

 

 

 

 

 

m

particle mass

 

 

 

 

 

 

 

 

 

 

 

 

 

Angular

J = J + mr ×v + v×p t

 

(3.5)

J ,J

angular momentum

 

 

momentum

 

 

in frames S and S

 

 

Kinetic

T = T + mu · v +

1

mv

2

(3.6)

T ,T

kinetic energy in

 

 

energy

 

2

 

 

frames S and S

 

 

aFrames coincide at t = 0.

Lorentz (spacetime) transformationsa

 

 

 

 

v2

 

−1/2

 

γ

Lorentz factor

 

Lorentz factor

 

(3.7)

c

speed of light

in

 

γ = 1 − c2

 

 

 

 

 

 

 

 

 

 

 

 

 

v

velocity of S

 

S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Time and position

 

 

 

 

 

 

 

 

 

 

 

x = γ(x + vt );

x = γ(x

vt)

(3.8)

x,x

x-position in frames

y = y ;

y = y

 

 

 

(3.9)

 

 

 

 

 

S and S (similarly

z = z ;

z = z

 

 

 

 

(3.10)

t,t

for y and z)

 

 

t = γ t +

v

x !; t = γ t

v

x!

 

time in frames S and

(3.11)

 

S

 

 

c2

c2

 

 

 

Di erential

dX = (cdt,− dx,− dy,− dz)

 

X

spacetime four-vector

four-vectorb

(3.12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor frames S and S coincident at t = 0 in relative motion along x. See page 141 for the transformations of electromagnetic quantities.

bCovariant components, using the (1,−1,−1,−1) signature.

S S

v

x x

Velocity transformationsa

Velocity

 

 

 

 

 

 

 

 

γ

Lorentz factor

 

 

 

 

 

 

 

 

 

 

 

 

 

= [1 − (v/c)2]−1/2

 

 

 

 

ux =

ux + v

;

 

 

ux

=

ux v

 

(3.13)

 

 

 

 

 

 

1 + uxv/c2

 

 

 

 

velocity of S in S

 

 

 

 

 

 

 

 

 

 

1 − uxv/c2

 

 

v

 

S

 

uy

 

 

 

u

 

uy

 

 

c

speed of light

S

uy =

 

 

 

;

=

 

 

(3.14)

ui,ui

particle velocity

 

 

 

u

 

2

 

2

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

γ(1 + uxv/c

)

 

 

 

γ(1 − uxv/c

)

 

 

components in

 

 

 

v

 

 

 

 

 

 

 

 

 

uz =

uz

 

 

;

uz

=

uz

 

(3.15)

 

frames S and S

 

 

 

x x

γ(1 + uxv/c2)

γ(1 − uxv/c2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor frames S and S coincident at t = 0 in relative motion along x.

3.2 Frames of reference

65

 

 

Momentum and energy transformationsa

Momentum and energy

 

 

 

 

 

 

 

 

γ

Lorentz factor

 

 

 

 

 

 

 

 

 

= [1 − (v/c)2]−1/2

p

x

=

γ(p

 

 

 

 

/c2);

 

= γ(p

x

vE/c2)

(3.16)

v

velocity of S in S

 

 

 

 

+ vE

p

 

 

py = py;

x

 

 

 

 

x

 

 

 

 

(3.17)

c

speed of light

 

 

 

 

 

 

 

py = py

 

 

 

 

 

px,px

x components of

pz = pz;

 

 

 

 

 

 

 

pz = pz

 

 

 

 

 

(3.18)

 

 

 

 

 

 

 

 

 

 

 

 

 

momentum in S and

E = γ(E

+ vp

);

 

 

E = γ(E

vpx)

(3.19)

E,E

S (sim. for y and z)

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

energy in S and S

 

E2

p2c2 = E 2

p 2c2 = m2c4

 

 

 

 

 

(3.20)

m0

(rest) mass

 

 

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

p

total momentum in S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

momentum

Four-vector

b

P = (E/c,px,py,pz)

(3.21)

 

 

 

four-vector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor frames S and S coincident at t = 0 in relative motion along x. bCovariant components, using the (1,−1,−1,−1) signature.

S S

v

x x 3

Propagation of lighta

Doppler

 

ν

 

 

 

v

 

 

ν frequency received in S

 

 

 

 

 

(3.22)

α

arrival angle in S

 

e ect

 

ν = γ

1 + c cosα!

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ν

frequency emitted in S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ

Lorentz factor

 

 

 

 

 

 

cosθ + v/c

 

 

 

 

 

cosθ =

 

 

 

(3.23)

 

= [1 − (v/c)2]−1/2

 

 

1 + (v/c)cosθ

 

 

 

Aberrationb

 

 

 

 

 

v

velocity of S in S

 

 

cosθ =

 

cosθ v/c

 

 

(3.24)

c

speed of light

 

 

 

 

 

θ,θ

emission angle of light

 

 

 

 

 

1 − (v/c)cosθ

 

 

 

in S and S

 

Relativistic

P (θ) =

 

 

 

 

 

sinθ

 

(3.25)

P (θ) angular distribution of

beamingc

2γ

2

[1 − (v/c)cosθ]

2

 

photons in S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aFor frames S and S coincident at t = 0 in relative motion along x.

bLight travelling in the opposite sense has a propagation angle of π + θ radians%.

cAngular distribution of photons from a source, isotropic and stationary in S . 0π P (θ) dθ = 1.

Sy c

α

x

Sy Sy

v

θ c x x

Four-vectorsa

Covariant and

x0

= x

0

x1 = −x

1

 

 

 

 

xi

covariant vector

 

 

 

 

 

 

 

 

contravariant

 

 

 

 

 

 

 

components

components

x2

= −x2

x3 = −x3

 

 

 

(3.26)

xi

contravariant components

Scalar product

xiyi = x0y0 + x1y1 + x2y2 + x3y3

 

(3.27)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

xi,x i four-vector components in

Lorentz transformations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

frames S and S

x0

= γ[x 0 + (v/c)x 1

];

 

x 0

= γ[x0 − (v/c)x1]

(3.28)

γ

Lorentz factor

x1

= γ[x 1 + (v/c)x 0

];

 

x 1

= γ[x1

(v/c)x0

]

(3.29)

 

= [1 − (v/c)2]−1/2

x2

= x 2;

 

 

 

x 3

= x3

 

 

 

(3.30)

v

velocity of S in S

 

 

 

 

 

 

 

c

speed of light

aFor frames S and S , coincident at t = 0 in relative motion along the (1) direction. Note that the (1,−1,−1,−1) signature used here is common in special relativity, whereas (−1,1,1,1) is often used in connection with general relativity (page 67).

66

Dynamics and mechanics

 

 

Rotating frames

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A

any vector

Vector trans-

 

dA

 

 

 

 

dA

 

 

 

 

 

 

S

stationary frame

 

=

 

 

+ ω

 

A

(3.31)

S

rotating frame

 

dt

 

 

dt

 

 

 

formation

 

S

 

S

×

 

 

ω

angular velocity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of S in S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

˙v,˙v

accelerations in S

Acceleration

˙v = ˙v + 2ω×v + ω×(ω×r )

(3.32)

 

and S

v

velocity in S

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r

position in S

Coriolis force

F

=

 

2

 

 

v

 

 

 

(3.33)

F cor coriolis force

×

 

 

 

 

particle mass

 

 

cor

 

 

 

 

 

 

 

 

 

 

 

 

m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Centrifugal

F

=

×

(ω

×

r )

 

 

(3.34)

F cen centrifugal force

 

 

r

perpendicular to

 

cen

 

 

 

 

 

 

 

 

 

 

 

force

 

 

= +2r

 

 

 

 

 

(3.35)

 

particle from

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rotation axis

 

mx¨ = Fx + 2e(y˙sinλ− ˙z cosλ)

 

Fi

nongravitational

Motion

(3.36)

 

force

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

λ

latitude

relative to

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

my¨ = Fy − 2ex˙ sinλ

 

 

(3.37)

y

northerly axis

Earth

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

z

local vertical axis

 

m¨z = Fz mg + 2ex˙ cosλ

(3.38)

x

easterly axis

Foucault’s

f = −ωe sinλ

 

 

 

 

 

(3.39)

f

pendulum’s rate

 

 

 

 

 

 

of turn

penduluma

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ωe

Earth’s spin rate

aThe sign is such as to make the rotation clockwise in the northern hemisphere.

ω

F cen

r m

r

ωe

y z

x

λ

3.3 Gravitation

Newtonian gravitation

 

 

 

 

 

 

 

 

 

 

m1,2 masses

 

Newton’s law of

F 1 = Gm1m2 rˆ12

 

 

(3.40)

F 1

force on m1 (= −F 2)

gravitation

 

 

r2

 

 

 

 

 

r12

vector from m1 to m2

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ˆ

unit vector

 

 

g = − φ

 

 

 

 

 

(3.41)

G

constant of gravitation

Newtonian field

 

 

 

 

 

g

gravitational field strength

equationsa

2

φ = − · g = 4πGρ

 

φ

gravitational potential

 

 

(3.42)

ρ

mass density

 

 

 

 

 

GM

 

 

 

 

r

vector from sphere centre

Fields from an

g(r) =

r2

rˆ

 

(r > a)

(3.43)

M

mass of sphere

isolated

 

 

 

GMr rˆ

(r < a)

 

a

radius of sphere

uniform sphere,

 

 

 

 

a3

 

 

 

 

 

 

 

 

 

GM

 

 

 

 

 

 

 

mass M, r from

 

 

 

 

 

 

 

(r > a)

 

 

a M

 

the centre

φ(r) =

r

 

 

 

(3.44)

 

r

 

 

 

GM (r2

 

3a2) (r < a)

 

 

 

 

 

 

 

 

2a

3

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aThe gravitational force on a mass m is mg.

3.3 Gravitation

67

 

 

General relativitya

Line element

ds2 = gµν dxµ dxν = − dτ2

 

 

 

(3.45)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Christo el

Γαβγ =

 

gαδ(gδβ,γ

 

+ gδγ,β gβγ,δ)

 

(3.46)

2

 

 

symbols and

φ;γ = φ∂φ/∂xγ

 

 

 

 

(3.47)

covariant

 

α

 

 

 

α

 

 

α

 

 

β

 

 

 

 

(3.48)

di erentiation

A;γ

= A

+ Γ βγA

 

 

 

 

 

 

 

 

Bα;γ = Bα,γ − ΓβαγBβ

 

 

 

 

(3.49)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rαβγδ = ΓαµγΓµβδ − ΓαµδΓµβγ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

+ Γαβδ,γ − Γαβγ,δ

 

(3.50)

Riemann tensor

Bµ;α;β Bµ;β;α = RγµαβBγ

 

 

 

(3.51)

 

Rαβγδ = −Rαβδγ ;

 

 

Rβαγδ = −Rαβγδ

 

(3.52)

 

Rαβγδ + Rαδβγ + Rαγδβ = 0

 

 

 

(3.53)

 

 

Dvµ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geodesic

 

 

= 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.54)

 

Dλ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

equation

 

 

 

 

 

 

 

 

 

DAµ

 

dAµ

 

 

 

 

 

 

 

where

 

 

 

 

 

 

 

 

 

 

+ Γµαβ Aαvβ

 

(3.55)

 

 

 

 

Dλ

 

 

 

dλ

 

Geodesic

 

D2ξµ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

deviation

 

 

= −Rµαβγvαξβvγ

 

 

 

 

(3.56)

 

Dλ2

 

 

 

 

Ricci tensor

Rαβ Rσασβ = gσδRδασβ = Rβα

 

(3.57)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Einstein tensor

 

µν

 

 

 

 

µν

1

 

 

µν

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

 

= R

 

 

 

2 g

 

 

 

 

R

 

 

 

 

(3.58)

 

 

 

 

 

 

 

 

 

 

 

 

 

Einstein’s field

Gµν = 8πT µν

 

 

 

 

 

 

 

 

 

 

(3.59)

equations

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Perfect fluid

T µν = (p+ ρ)uµuν + pgµν

 

 

 

(3.60)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2M

 

 

 

 

2M

 

−1

 

Schwarzschild

 

 

2

= − 1 −

 

 

 

 

 

2

 

1 −

 

 

 

2

solution

ds

 

r

 

 

 

dt

+

r

 

dr

 

(exterior)

 

 

 

 

 

+ r2(dθ2 + sin2 θ dφ2)

 

(3.61)

Kerr solution (outside a spinning black hole)

ds2 =

∆ − a2 sin2 θ

dt2

2a

2Mrsin2 θ

dt dφ

 

 

 

 

 

 

 

2

 

 

 

2

 

 

 

 

 

+

(r2 + a2)2 2a2∆sin2 θ

sin2 θdφ2 +

2

dr2

+ 2 dθ2

(3.62)

 

 

 

 

 

 

 

 

 

 

 

 

ds

invariant interval

 

dτ

proper time interval

 

gµν

metric tensor

 

dxµ

di erential of xµ

 

Γα

Christo el symbols

 

βγ

 

 

partial di . w.r.t. xα

 

;α

covariant di . w.r.t. xα

 

3

φ

scalar

Aα

contravariant vector

Bα

covariant vector

 

 

Rα

Riemann tensor

 

βγδ

 

 

vµ

tangent vector

 

(= dxµ/dλ)

λa ne parameter (e.g., τ for material particles)

ξµ

geodesic deviation

Rαβ

Ricci tensor

Gµν

Einstein tensor

RRicci scalar (= gµν Rµν )

T µν

stress-energy tensor

ppressure (in rest frame)

ρdensity (in rest frame)

uν

fluid four-velocity

Mspherically symmetric mass (see page 183)

(r,θ,φ) spherical polar coords.

ttime

Jangular momentum (along z)

aJ/M

r2 − 2Mr + a2

2

r2 + a2 cos2 θ

a

General relativity

conventionally uses the (

1,1,1,1) metric signature and “geometrized units” in which G = 1 and

 

 

 

×

10

28

 

 

 

 

c = 1. Thus, 1kg = 7.425

 

m etc. Contravariant indices are written as superscripts and covariant indices as

 

 

 

 

2

means (ds)

2

etc.

subscripts. Note also that ds

 

 

68 Dynamics and mechanics

3.4 Particle motion Dynamics definitionsa

 

 

 

 

 

 

F

force

Newtonian force

F = m¨r = p˙

(3.63)

m

mass of particle

 

 

 

 

 

 

r

particle position vector

 

 

 

 

 

 

 

 

Momentum

p = m˙r

(3.64)

p

momentum

 

 

 

 

 

 

 

 

Kinetic energy

T =

1

mv2

(3.65)

T

kinetic energy

 

 

 

 

 

2

 

 

v

particle velocity

 

 

 

 

 

 

Angular momentum

J = r×p

(3.66)

J

angular momentum

 

 

 

 

 

 

Couple (or torque)

G = r×F

(3.67)

G

couple

 

 

 

 

 

 

 

 

Centre of mass

 

 

 

N

 

R0

position vector of centre of mass

(ensemble of N

 

 

 

i=1 miri

 

mi

mass of ith particle

R0 = iN=1 mi

(3.68)

particles)

ri

position vector of ith particle

 

 

 

 

 

aIn the Newtonian limit, v c, assuming m is constant.

Relativistic dynamicsa

 

 

 

 

v2

 

−1/2

 

γ

Lorentz factor

Lorentz factor

 

 

 

(3.69)

c

speed of light

γ = 1 − c2

 

 

 

 

 

 

 

 

 

v

particle velocity

 

 

 

 

 

 

 

 

p

relativistic momentum

Momentum

p = γm0v

 

 

(3.70)

 

 

m0

particle (rest) mass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force

F =

dp

 

 

 

(3.71)

F

force on particle

dt

 

 

t

time

 

 

 

 

 

 

 

 

 

 

 

 

Rest energy

Er = m0c2

 

 

(3.72)

Er

particle rest energy

 

 

 

 

 

Kinetic energy

T = m0c2(γ − 1)

(3.73)

T

relativistic kinetic energy

Total energy

E = γm0c2

 

 

(3.74)

 

 

= (p2c2 + m02c4)1/2

(3.75)

E

total energy (= Er + T )

 

 

 

 

 

 

 

 

 

 

 

 

 

aIt is now common to regard mass as a Lorentz invariant property and to drop the term “rest mass.” The symbol m0 is used here to avoid confusion with the idea of “relativistic mass” (= γm0) used by some authors.

Constant acceleration

v = u+ at

(3.76)

u

initial velocity

v2 = u2 + 2as

(3.77)

v

final velocity

 

 

 

 

 

 

s = ut+

1

at2

(3.78)

t

time

2

s

distance travelled

 

 

 

 

s =

u+ v

(3.79)

a

acceleration

 

 

t

 

 

2

 

 

 

 

 

 

 

 

 

 

 

3.4 Particle motion

69

 

 

Reduced mass (of two interacting bodies)

 

 

m2

 

 

 

 

r

 

m1

 

 

 

 

 

 

 

 

 

centre

 

 

 

 

of

 

 

 

 

 

 

 

 

 

mass

 

 

 

 

 

r2

 

 

 

 

 

 

r1

 

 

 

Reduced mass

µ =

 

 

m1m2

(3.80)

m1 + m2

 

 

 

 

r1 =

 

 

m2

(3.81)

 

 

 

r

Distances from

m1 + m2

centre of mass

r2 =

 

 

 

m1

r

(3.82)

 

 

 

 

 

 

 

 

 

 

m1 + m2

 

 

 

Moment of

I = µ|r|

2

 

 

(3.83)

inertia

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total angular

J = µr×˙r

(3.84)

momentum

 

 

 

 

 

 

 

 

 

 

 

 

Lagrangian

L =

1

µr|2 U(|r|)

(3.85)

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

µ

reduced mass

3

mi

interacting masses

ri

position vectors from centre of

 

 

 

mass

 

rr = r1 r2

|r| distance between masses

Imoment of inertia

Jangular momentum

LLagrangian

Upotential energy of interaction

Ballisticsa

 

v = v0 cosαxˆ + (v0 sinαgt)yˆ

v0

initial velocity

 

v

velocity at t

Velocity

 

 

 

 

 

 

 

 

 

 

(3.86)

α

elevation angle

 

 

 

 

 

 

 

 

 

 

 

 

v

2

 

2

− 2gy

(3.87)

 

acceleration

 

 

= v0

g

 

 

 

 

 

 

 

 

 

 

 

 

gravitational

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Trajectory

 

 

 

 

 

 

 

 

 

gx2

 

ˆ

unit vector

y = xtanα2v02 cos2 α

(3.88)

t

time

 

Maximum

h =

 

v02

sin

2

α

(3.89)

h

maximum

height

 

2g

 

 

height

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Horizontal

 

 

 

v2

 

 

 

 

 

 

 

 

l =

0

sin2α

(3.90)

l

range

range

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aIgnoring the curvature and rotation of the Earth and frictional losses. g is assumed constant.

yˆ

v0

α h xˆ

l

70

Dynamics and mechanics

 

 

Rocketry

Escape

 

vesc =

 

GM

 

1/2

 

 

 

 

 

 

 

 

velocitya

2

 

 

 

 

 

 

 

 

 

 

(3.91)

 

r

 

 

 

 

 

 

 

 

Specific

 

Isp =

u

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.92)

impulse

 

g

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Exhaust

 

 

2γRTc

 

 

 

1/2

 

 

 

 

 

 

 

 

velocity (into

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = (γ − 1)µ

 

 

 

 

 

 

 

 

 

(3.93)

a vacuum)

 

 

 

 

 

 

 

 

 

Rocket

 

 

 

 

 

 

 

Mi

 

 

 

 

 

 

 

 

 

 

 

equation

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v = uln Mf ulnM

 

 

 

(3.94)

(g = 0)

 

 

 

 

 

 

 

 

N

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Multistage

 

ui lnMi

 

 

 

 

 

 

 

(3.95)

rocket

 

v =

 

 

 

 

 

 

 

 

 

 

 

 

i=1

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In a constant

v = ulnM − gtcosθ

 

 

 

 

 

 

 

gravitational

 

 

 

 

 

 

(3.96)

field

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GM

 

 

 

1/2

 

 

2r

 

1/2

 

 

vah =

 

 

 

 

 

b

 

 

− 1

Hohmann

ra

 

ra + rb

cotangential

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.97)

 

 

 

 

 

 

 

 

 

 

 

1/2

 

 

 

 

 

 

 

1/2

 

b

 

 

 

 

 

GM

 

 

 

 

 

 

2r

 

 

transfer

 

vhb =

 

 

1

 

 

 

 

 

a

 

 

rb

 

ra + rb

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.98)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

vesc

escape velocity

Gconstant of gravitation

Mmass of central body

rcentral body radius

Isp

specific impulse

ue ective exhaust velocity

gacceleration due to gravity

Rmolar gas constant

γratio of heat capacities

Tc

combustion temperature

µe ective molecular mass of exhaust gas

v

rocket velocity increment

Mi

pre-burn rocket mass

Mf

post-burn rocket mass

Mmass ratio

Nnumber of stages

Mi

mass ratio for ith burn

ui

exhaust velocity of ith burn

tburn time

θrocket zenith angle

vah

velocity increment, a to h

vhb

velocity increment, h to b

ra

radius of inner orbit

rb

radius of outer orbit

 

 

transfer ellipse, h

 

a

b

aFrom the surface of a spherically symmetric, nonrotating body, mass M.

bTransfer between coplanar, circular orbits a and b, via ellipse h with a minimal expenditure of energy.

3.4 Particle motion

71

 

 

Gravitationally bound orbital motiona

Potential energy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

GMm

 

 

α

 

 

 

 

 

 

 

 

of interaction

U(r) = −

 

 

 

 

 

 

 

 

 

 

 

 

 

≡ −

 

 

 

 

 

 

 

 

 

 

 

(3.99)

 

 

 

 

 

r

 

 

r

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total energy

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

J2

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

E = − r + 2mr2 = − 2a

 

 

 

 

 

 

 

(3.100)

 

 

 

 

 

 

 

 

Virial theorem

E = U /2 = − T

 

 

 

 

 

 

 

(3.101)

(1/r potential)

U = −2 T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.102)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Orbital

r0

= 1 + ecosφ ,

 

or

 

 

 

 

 

 

 

(3.103)

equation

 

r

 

 

 

 

 

 

 

 

(Kepler’s 1st

r =

 

a(1 − e2)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.104)

law)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1 + ecosφ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Rate of

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

sweeping area

 

dA

=

 

 

J

 

 

 

 

= constant

 

 

 

 

 

 

 

(3.105)

(Kepler’s 2nd

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dt

2m

 

 

 

 

 

 

 

law)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semi-major axis

a =

 

 

r0

=

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.106)

 

2

2|E|

 

 

 

 

 

 

 

 

 

 

 

 

1 − e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semi-minor axis

b =

 

 

 

 

 

 

 

r0

 

 

 

 

 

 

 

 

=

 

 

 

J

 

 

 

 

 

 

 

(3.107)

 

(1 − e2)1/2

 

(2m|E|)1/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

EJ2

 

 

 

 

1/2

 

 

 

 

 

 

 

b2

 

 

1/2

 

 

e = 1 +

 

 

 

= 1

 

 

 

 

 

 

Eccentricityb

2

 

 

 

 

 

 

 

(3.108)

2

a2

 

Semi-latus-

 

 

 

 

 

J2

 

 

 

 

 

b2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rectum

r0 =

 

 

 

=

 

 

 

 

 

 

= a(1 − e2)

 

 

 

 

 

 

 

(3.109)

 

a

 

 

 

 

 

 

 

Pericentre

rmin =

 

 

 

 

r0

 

 

 

 

= a(1 − e)

 

 

 

 

 

 

 

(3.110)

 

1 + e

 

 

 

 

 

 

 

 

Apocentre

rmax =

 

 

 

 

r0

 

 

 

 

 

= a(1 + e)

 

 

 

 

 

 

 

(3.111)

 

 

1 − e

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

 

 

Speed

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v = GM

 

 

 

 

 

 

r a

 

 

 

 

 

 

 

 

 

 

 

 

 

(3.112)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Period (Kepler’s

P = πα

 

 

 

 

 

 

m

 

1/2

 

 

 

 

 

 

 

 

m 1/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 2πa

 

 

!

 

3rd law)

2|E|3

 

 

 

 

 

α

(3.113)

U(r) potential energy

Gconstant of gravitation

Mcentral mass

morbiting mass ( M)

αGMm (for gravitation)

Etotal energy (constant)

J

total angular momentum

 

 

(constant)

3

 

 

Tkinetic energy

· mean value

r0 semi-latus-rectum

rdistance of m from M

eeccentricity

φphase (true anomaly)

Aarea swept out by radius vector (total area = πab)

asemi-major axis

bsemi-minor axis

 

2a

A

m

r

 

r0

 

φ

 

M

2b ae

rmax

rmin

rmin pericentre distance

rmax apocentre distance

vorbital speed

Porbital period

aFor an inverse-square law of attraction between two isolated bodies in the nonrelativistic limit. If m is not M, then the equations are valid with the substitutions m µ = Mm/(M + m) and M → (M + m) and with r taken as the body separation. The distance of mass m from the centre of mass is then rµ/m (see earlier table on Reduced mass). Other orbital dimensions scale similarly, and the two orbits have the same eccentricity.

bNote that if the total energy, E, is < 0 then e < 1 and the orbit is an ellipse (a circle if e = 0). If E = 0, then e = 1 and the orbit is a parabola. If E > 0 then e > 1 and the orbit becomes a hyperbola (see Rutherford scattering on next page).

72

Dynamics and mechanics

 

 

Rutherford scatteringa

 

 

 

 

 

 

 

 

 

 

y

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

trajectory

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b

for α < 0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

scattering

 

 

 

 

 

 

 

 

 

x

 

 

 

 

 

 

 

 

 

 

 

 

 

 

centre

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a

 

χ

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rmin (α<0)

 

 

 

 

 

 

trajectory

 

 

 

 

 

 

 

 

 

 

 

 

 

for α > 0

 

rmin (α>0)

 

 

 

 

 

 

 

 

 

α

 

 

 

 

 

 

 

 

 

 

 

Scattering potential

U(r) =

r

 

 

 

 

 

 

 

 

(3.114)

U(r) potential energy

 

< 0

repulsive

 

 

 

 

 

r

particle separation

 

 

 

 

 

 

 

 

energy

α"> 0

attractive

 

 

 

(3.115)

α

constant

 

 

χ

= |α|

 

 

 

 

 

 

 

 

 

χ

scattering angle

Scattering angle

tan

 

 

 

 

 

 

 

 

(3.116)

E

total energy (> 0)

 

 

2

 

 

2Eb

 

 

 

 

 

 

 

 

b

impact parameter

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

rmin =

|α|

csc χ

α

 

(3.117)

rmin

closest approach

Closest approach

 

 

 

2E

 

2

|α|

 

 

a

hyperbola semi-axis

 

 

= a(e± 1)

 

 

 

 

 

 

(3.118)

e

eccentricity

Semi-axis

a =

|α|

 

 

 

 

 

 

 

 

 

(3.119)

 

 

 

 

2E

 

 

 

 

 

 

 

 

 

 

 

 

 

e =

4

E2b2

+ 1

1/2

 

χ

 

 

 

Eccentricity

 

 

= csc

(3.120)

 

 

α2

 

 

2

 

 

Motion trajectoryb

4E2

 

2

y2

 

 

 

 

 

 

 

 

 

x,y

position with respect to

α2

x

b2 = 1

 

 

 

 

 

 

(3.121)

 

hyperbola centre

 

 

 

 

 

 

 

 

 

 

 

 

 

 

α2

 

 

 

1/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scattering centrec

x = ± 4E2 + b2

 

 

 

 

(3.122)

dσ

di erential scattering

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dσ

 

 

1 dN

 

 

 

 

 

 

 

 

 

dΩ

 

 

 

 

 

 

 

 

 

 

 

 

cross section

 

 

 

 

 

 

 

 

 

 

 

 

 

Rutherford

dΩ

= n dΩ

 

 

 

 

 

 

 

 

(3.123)

n

beam flux density

scattering formulad

 

=

α

 

2

4 χ

 

 

(3.124)

dN

number of particles

 

 

4E !

csc

2

 

 

 

scattered into dΩ

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solid angle

aNonrelativistic treatment for an inverse-square force law and a fixed scattering centre. Similar scattering results from either an attractive or repulsive force. See also Conic sections on page 38.

bThe correct branch can be chosen by inspection. cAlso the focal points of the hyperbola.

dn is the number of particles per second passing through unit area perpendicular to the beam.

3.4 Particle motion

73

 

 

Inelastic collisionsa

 

m1

 

v1

 

 

m2

v2

m1 v1

 

m2 v2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Before collision

 

After collision

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coe cient of

 

v2

v1 = (v1 v2)

 

 

 

(3.125)

 

 

coe cient of restitution

 

 

 

 

 

 

 

3

restitution

= 1

 

if perfectly elastic

(3.126)

vi

 

pre-collision velocities

 

= 0

 

if perfectly inelastic

(3.127)

vi

 

post-collision velocities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T ,T

 

total KE in zero

 

 

Loss of kinetic

 

T

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

= 1

 

2

 

 

 

(3.128)

 

 

momentum frame

 

 

b

 

 

 

 

 

 

 

 

 

 

 

before and after

 

 

energy

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

collision

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v1

=

m1 m2

v1 +

(1 + )m2

v2

(3.129)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Final velocities

 

 

 

m1 + m2

 

 

 

m1 + m2

 

 

 

mi

 

particle masses

 

 

 

 

 

m2 m1

 

 

 

(1 + )m1

 

 

 

 

 

 

 

 

 

v2

=

v2 +

v1

(3.130)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m1 + m2

 

 

 

m1 + m2

 

 

 

 

 

 

 

 

 

aAlong the line of centres, v1,v2 c. bIn zero momentum frame.

Oblique elastic collisionsa

 

 

 

 

 

 

 

 

θ2 v2

 

 

θ

 

m2

 

 

m1

m2

Before collision

 

 

After collision

 

 

m1

 

 

v

 

 

 

θ

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

v1

 

 

 

m2 sin2θ

 

 

θ

angle between

 

tanθ1 =

 

 

(3.131)

 

centre line and

Directions of

 

m2 cos2θ

 

 

motion

m1

 

(3.132)

θi

incident velocity

 

θ2 = θ

 

 

 

 

final trajectories

 

 

 

 

 

 

 

mi

sphere masses

 

 

> π/2

if m1 < m2

 

 

 

 

Relative

θ1 + θ2 = π/2

if m1 = m2

 

(3.133)

 

 

separation angle

 

 

 

 

 

 

 

 

 

< π/2

if m1 > m2

 

 

 

 

 

2

 

2

 

1/2

 

 

 

 

v1 = (m1 + m2 − 2m1m2 cos2θ)

v

(3.134)

v

incident velocity

Final velocities

 

 

m1 + m2

 

 

 

of m1

2m1v

 

 

 

 

 

 

 

 

 

 

vi

final velocities

 

v2 = m1 + m2 cosθ

 

(3.135)

 

 

aCollision between two perfectly elastic spheres: m2 initially at rest, velocities c.