Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
26
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

142

Electromagnetism

 

 

7.4 Fields associated with media

Polarisation

Definition of electric

p = qa

 

 

 

 

 

(7.80)

dipole moment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalised electric

p =

r

 

ρ dτ

(7.81)

 

 

 

dipole moment

 

volume

 

 

 

 

Electric dipole

φ(r) =

 

 

p · r

(7.82)

 

 

 

 

potential

 

 

 

4π 0r3

 

 

 

 

 

 

 

 

 

 

 

Dipole moment per

 

 

 

 

 

 

 

 

 

unit volume

P = np

 

 

 

 

(7.83)

(polarisation)a

 

 

 

 

 

 

 

 

 

Induced volume

· P = −ρind

(7.84)

charge density

 

 

 

 

 

 

 

 

 

 

Induced surface

σind = P · sˆ

 

 

(7.85)

charge density

 

 

 

 

 

 

 

 

 

 

 

 

Definition of electric

D = 0E + P

(7.86)

displacement

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of electric

P = 0χE E

 

 

(7.87)

susceptibility

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Definition of relative

r = 1 + χE

 

 

(7.88)

D = 0 rE

 

 

(7.89)

permittivityb

 

 

 

= E

 

 

 

 

(7.90)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Atomic

 

p = αE loc

 

 

(7.91)

polarisabilityc

 

 

 

 

 

 

 

 

 

 

 

Depolarising fields

 

 

 

 

NdP

 

 

 

 

 

 

 

 

 

 

E d = − 0

 

 

(7.92)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Clausius–Mossotti

 

 

r

1

 

(7.93)

equation

d

 

 

=

 

 

 

3 0

 

 

 

 

 

r + 2

 

±q end charges

acharge separation vector (from − to +)

pdipole moment

ρcharge density

dτ

volume element

r

vector to dτ

φdipole potential

rvector from dipole

0

permittivity of free

 

space

Ppolarisation

nnumber of dipoles per unit volume

ρind

volume charge density

σind

surface charge density

sˆ

unit normal to surface

Delectric displacement

Eelectric field

χE

electrical susceptibility

 

(may be a tensor)

r

relative permittivity

permittivity

αpolarisability

E loc

local electric field

E d

depolarising field

Nd

depolarising factor

 

=1/3 (sphere)

 

=1 (thin slab to P )

 

=0 (thin slab to P )

 

=1/2 (long circular

 

cylinder, axis to P )

p +

aAssuming dipoles are parallel. The equivalent of Equation (7.112) holds for a hot gas of electric dipoles. bRelative permittivity as defined here is for a linear isotropic medium.

cThe polarisability of a conducting sphere radius a is α = 4π 0a3. The definition p = α 0E loc is also used.

dWith the substitution η2 = r [cf. Equation (7.195) with µr = 1] this is also known as the “Lorentz–Lorenz formula.”

7.4 Fields associated with media

143

 

 

Magnetisation

Definition of

 

 

 

 

 

 

 

 

 

 

magnetic dipole

dm = I ds

(7.94)

moment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Generalised

1

 

r ×J dτ

 

magnetic dipole

m =

 

 

 

 

(7.95)

2

moment

volume

 

Magnetic dipole

φm(r) =

µ0m ·3r

(7.96)

(scalar) potential

 

 

 

 

 

4πr

 

 

 

 

 

 

 

 

 

 

 

 

Dipole moment per

 

 

 

 

 

 

 

 

 

 

unit volume

M = nm

 

 

 

 

(7.97)

(magnetisation)a

 

 

 

 

 

 

 

 

 

 

Induced volume

J ind = ×M

(7.98)

current density

 

 

 

 

 

 

 

 

 

 

 

Induced surface

j ind = M ×sˆ

(7.99)

current density

 

 

 

 

 

 

 

 

 

 

 

Definition of

 

 

 

 

 

 

 

 

 

 

magnetic field

B = µ0(H + M )

(7.100)

strength, H

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

M = χH H

(7.101)

Definition of

 

 

χBB

 

magnetic

=

(7.102)

 

µ0

 

 

 

susceptibility

 

 

 

 

 

 

 

 

 

 

χH

 

 

 

χB =

 

 

(7.103)

 

1 + χH

 

 

 

 

 

B = µ0µrH

(7.104)

Definition of relative

= µH

 

 

 

 

(7.105)

µr = 1 + χH

(7.106)

permeabilityb

 

=

 

1

 

 

 

(7.107)

 

 

 

 

 

 

1 − χB

dm dipole moment

Iloop current

ds loop area (right-hand sense with respect to loop current)

mdipole moment

Jcurrent density

dτ

volume element

r

vector to

φm

magnetic scalar

 

potential

rvector from dipole

µ0

permeability of free

 

space

Mmagnetisation

nnumber of dipoles per unit volume

J ind

volume current

 

density (i.e., A m−2)

j ind

surface current

 

density (i.e., A m−1)

sˆ

unit normal to

 

surface

Bmagnetic flux density

Hmagnetic field strength

χH magnetic susceptibility. χB is also used (both may be tensors)

µr

relative permeability

µpermeability

dm, ds

outin

7

aAssuming all the dipoles are parallel. See Equation (7.112) for a classical paramagnetic gas and page 101 for the quantum generalisation.

bRelative permeability as defined here is for a linear isotropic medium.

144 Electromagnetism

Paramagnetism and diamagnetism

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m

 

magnetic moment

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

r2

mean squared orbital radius

Diamagnetic

 

 

e2

 

 

 

 

 

 

 

 

(of all electrons)

 

 

2

 

 

 

 

 

Z

 

atomic number

moment of an atom

m = −

 

 

Z r

B

(7.108)

 

6me

 

 

B

 

magnetic flux density

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

me

electron mass

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

e

electronic charge

Intrinsic electron

 

 

e

 

 

 

 

 

 

J

 

total angular momentum

m

 

 

 

 

 

(7.109)

 

 

 

magnetic momenta

 

gJ

 

 

 

 

 

g

 

Lande´ g-factor (=2 for spin,

2me

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=1 for orbital momentum)

 

 

 

 

 

 

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

L(x) = cothx

 

 

 

(7.110)

 

 

 

Langevin function

x

L

(x)

Langevin function

 

x/3

 

(x < 1)

(7.111)

 

 

Classical gas

 

 

 

 

 

 

 

m0B

 

 

M

apparent magnetisation

paramagnetism

 

 

 

 

 

 

 

 

m0

magnitude of magnetic dipole

M = nm0L kT

(7.112)

 

 

moment

(

J

|

¯h)

 

 

|

 

 

 

 

 

 

 

 

 

 

 

 

 

 

n

 

dipole number density

 

 

 

 

 

µ0nm02

 

 

 

 

 

 

 

T

 

temperature

Curie’s law

 

 

 

 

 

 

(7.113)

k

 

Boltzmann constant

χH =

3kT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

χH

magnetic susceptibility

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Curie–Weiss law

χH =

 

µ0nm02

 

 

 

 

 

(7.114)

µ0

 

permeability of free space

3k(T Tc)

Tc

Curie temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aSee also page 100.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Boundary conditions for E , D, B, and H a

Parallel

 

 

 

 

 

component parallel to

component of the

E

 

continuous

(7.115)

electric field

 

 

 

 

interface

 

 

 

 

 

 

 

 

 

 

 

 

 

Perpendicular

 

 

 

 

 

 

component of the

B

continuous

(7.116)

component

magnetic flux

 

perpendicular to

density

 

 

 

 

 

interface

 

 

 

 

 

 

 

 

 

 

 

D1,2

electrical displacements

 

 

 

 

 

 

in media 1 & 2

Electric

sˆ · (D2 D1) = σ

(7.117)

sˆ

unit normal to surface,

displacementb

 

directed 1 → 2

 

 

 

 

 

σ

surface density of free

 

 

 

 

 

 

charge

 

 

 

 

 

H 1,2

magnetic field strengths

Magnetic field

 

 

 

 

sˆ×(H 2 H 1) = j s

(7.118)

 

in media 1 & 2

strengthc

j s

surface current per unit

 

 

 

 

 

 

width

 

 

 

 

 

 

 

aAt the plane surface between two uniform media. bIf σ = 0, then D is continuous.

cIf j s = 0 then H is continuous.

2 sˆ

1

7.5 Force, torque, and energy

145

 

 

7.5 Force, torque, and energy

Electromagnetic force and torque

Force between two

 

 

q1q2

 

 

 

 

 

static charges:

F 2 =

 

 

 

rˆ12

 

(7.119)

 

 

 

 

4π 0r122

 

Coulomb’s law

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Force between two

dF 2 =

µ0I1I2

[dl2×(dl1×rˆ12)]

current-carrying

4πr2

elements

 

 

 

12

 

 

 

 

 

 

 

 

 

 

 

 

(7.120)

 

 

 

 

 

 

 

 

 

 

Force on a

 

 

 

 

 

 

 

 

 

current-carrying

dF = I dl×B

 

 

(7.121)

element in a

 

 

magnetic field

 

 

 

 

 

 

 

 

 

Force on a charge

F = q(E + v×B)

 

(7.122)

(Lorentz force)

 

 

 

 

 

 

 

 

 

 

 

Force on an electric

F = (p · )E

 

 

(7.123)

dipolea

 

 

Force on a magnetic

F = (m · )B

 

 

(7.124)

dipoleb

 

 

Torque on an

G = p×E

 

 

 

 

 

(7.125)

electric dipole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Torque on a

G = m×B

 

 

 

 

 

(7.126)

magnetic dipole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Torque on a

G = IL

r

 

(dlL

 

B) (7.127)

current loop

 

loop

×

 

 

 

×

 

F 2

force on q2

q1,2

charges

r12

vector from 1 to 2

ˆunit vector

0

permittivity of free

 

space

dl1,2

line elements

I1,2

currents flowing along

 

dl1 and dl2

dF 2

force on dl2

µ0

permeability of free

 

space

dl

line element

Fforce

I current flowing along dl

Bmagnetic flux density

Eelectric field

vcharge velocity

pelectric dipole moment

mmagnetic dipole moment

Gtorque

dlL

line-element (of loop)

rposition vector of dlL

IL

current around loop

a

simplifies to (p · E ) if p is intrinsic, (pE/2) if p is induced by E and the medium is isotropic.

bF

F simplifies to (m · B) if m is intrinsic, (mB/2) if m is induced by B and the medium is isotropic.

F 2

q1 r12 q2

dl1

r12

dl2

7

146

Electromagnetism

 

 

Electromagnetic energy

Electromagnetic field

1

 

 

 

 

 

 

 

 

1 B2

 

energy density (in free

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

u = 2 0E + 2 µ0

(7.128)

space)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy density in

1

 

(D · E + B · H )

(7.129)

media

u =

 

 

 

2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Energy flow (Poynting)

N = E×H

 

 

 

 

 

 

 

(7.130)

vector

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mean flux density at a

 

 

 

 

 

 

 

 

ω4p2 sin2 θ

 

 

 

 

 

 

 

 

 

 

 

distance r from a short

N =

 

 

 

 

 

0

 

 

 

 

 

 

(7.131)

 

32π2 0c3r3 r

oscillating dipole

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Total mean power

 

 

 

ω4p2

/2

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

from oscillating

 

 

 

 

 

 

 

 

 

0

 

 

 

 

 

 

 

 

W = 6π 0c3

 

 

(7.132)

dipolea

 

 

Self-energy of a

 

 

 

 

 

1

 

 

 

 

 

 

 

 

 

Utot =

 

 

φ(r)ρ(r) dτ

(7.133)

 

2

 

charge distribution

 

 

 

 

 

volume

 

 

 

Energy of an assembly

Utot =

1

i j

Cij ViVj

(7.134)

of capacitorsb

 

 

2

Energy of an assembly

Utot =

1

i j

Lij IiIj

(7.135)

of inductorsc

 

 

2

Intrinsic dipole in an

Udip = −p · E

 

 

(7.136)

electric field

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Intrinsic dipole in a

Udip = −m · B

 

 

(7.137)

magnetic field

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hamiltonian of a

 

 

|pm qA|2

 

 

 

 

charged particle in an

H =

 

+

(7.138)

EM fieldd

 

 

 

 

 

 

 

 

 

2m

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

uenergy density

Eelectric field

Bmagnetic flux density

0

permittivity of free space

µ0

permeability of free space

Delectric displacement

Hmagnetic field strength

cspeed of light

Nenergy flow rate per unit area to the flow direction

p0 amplitude of dipole moment

rvector from dipole ( wavelength)

θangle between p and r

ωoscillation frequency

Wtotal mean radiated power

Utot

total energy

dτ

volume element

r

position vector of dτ

φelectrical potential

ρcharge density

Vi

potential of ith capacitor

Cij

mutual capacitance between

 

capacitors i and j

Lij

mutual inductance between

 

inductors i and j

Udip energy of dipole

pelectric dipole moment

mmagnetic dipole moment

HHamiltonian

pm particle momentum

qparticle charge

mparticle mass

Amagnetic vector potential

aSometimes called “Larmor’s formula.”

bCii is the self-capacitance of the ith body. Note that Cij = Cji. cLii is the self-inductance of the ith body. Note that Lij = Lji. dNewtonian limit, i.e., velocity c.