Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
General Physics part 1 / PhysPraktikum / Woan G. The Cambridge Handbook of Physics Formulas (CUP, 2000)(ISBN 0521573491)(230s)_PRef_.pdf
Скачиваний:
52
Добавлен:
27.03.2015
Размер:
1.65 Mб
Скачать

Chapter 5 Thermodynamics

5.1Introduction

The term thermodynamics is used here loosely and includes classical thermodynamics, statistical thermodynamics, thermal physics, and radiation processes. Notation in these subjects can be confusing and the conventions used here are those found in the majority of modern treatments. In particular:

• The internal energy of a system is defined in terms of the heat supplied to the system plus

the work done on the system, that is, dU = d Q+ d W .

5

The lowercase symbol p is used for pressure. Probability density functions are denoted by pr(x) and microstate probabilities by pi.

With the exception of specific intensity, quantities are taken as specific if they refer to unit mass and are distinguished from the extensive equivalent by using lowercase. Hence specific

volume, v, equals V /m, where V is the volume of gas and m its mass. Also, the specific heat capacity of a gas at constant pressure is cp = Cp/m, where Cp is the heat capacity of mass m of gas. Molar values take a subscript “m” (e.g., Vm for molar volume) and remain in upper case.

• The component held constant during a partial di erentiation is shown after a vertical bar;

hence ∂V is the partial di erential of volume with respect to pressure, holding temperature constant∂p. T

The thermal properties of solids are dealt with more explicitly in the section on solid state physics (page 123). Note that in solid state literature specific heat capacity is often taken to mean heat capacity per unit volume.

106

Thermodynamics

 

 

5.2 Classical thermodynamics

Thermodynamic laws

Thermodynamic

T

lim(pV )

(5.1)

temperaturea

 

p

0

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Kelvin

 

 

 

 

 

 

 

 

 

 

 

 

lim(pV )T

 

T /K = 273.16

p→0

(5.2)

temperature scale

lim(pV )tr

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p→0

 

First lawb

 

 

 

 

 

 

 

W

(5.3)

dU = d

Q+ d

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Qrev

 

 

 

 

 

Q

 

 

Entropyc

 

 

 

d

 

 

 

d

 

dS =

 

 

 

 

 

T

T

(5.4)

 

 

 

 

 

 

Tthermodynamic temperature

Vvolume of a fixed mass of gas

pgas pressure

Kkelvin unit

tr

temperature of the triple point

 

of water

dU change in internal energy

d W work done on system

d Q heat supplied to system

Sexperimental entropy

Ttemperature

rev reversible change

aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of thermodynamics: If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each other.

bThe d notation represents a di erential change in a quantity that is not a function of state of the system.

cAssociated with the second law of thermodynamics: No process is possible with the sole e ect of completely converting heat into work (Kelvin statement).

Thermodynamic worka

Hydrostatic

 

 

 

 

p

(hydrostatic) pressure

d W = −p dV

(5.5)

pressure

dV

volume change

 

 

 

 

 

 

 

W work done on the system

 

 

 

 

 

d

Surface tension

 

 

W = γ dA

(5.6)

 

 

 

 

d

γ

surface tension

 

 

 

 

 

dA

change in area

 

 

 

 

 

E

electric field

 

 

 

 

 

Electric field

d W = E · dp

(5.7)

dp

induced electric dipole moment

 

 

 

 

 

B

magnetic flux density

Magnetic field

d W = B · dm

(5.8)

dm

induced magnetic dipole moment

 

 

 

 

 

φ

potential di erence

Electric current

d W = ∆φ dq

(5.9)

dq

charge moved

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on which they are working.

5.2 Classical thermodynamics

107

 

 

Cycle e ciencies (thermodynamic)a

 

 

work extracted

 

 

 

Th Tl

 

 

 

η

e ciency

Heat engine

η =

 

 

 

 

 

(5.10)

Th

higher temperature

 

 

 

 

 

heat input

 

 

 

Th

 

 

Tl

lower temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Refrigerator

 

heat extracted

 

 

 

 

 

 

Tl

 

 

 

 

 

 

 

 

 

η =

work done

 

Th

Tl

 

(5.11)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat pump

 

heat supplied

 

 

 

 

 

Th

 

 

 

 

 

 

 

 

 

 

η =

work done

Th

Tl

 

(5.12)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ−1

 

V1

compression ratio

 

 

work extracted

 

 

 

 

 

 

 

V2

 

V2

b

 

 

 

 

 

 

 

 

 

 

Otto cycle

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

γ ratio of heat capacities

η =

heat input

 

 

= 1 − V1

 

(5.13)

 

 

 

 

(assumed constant)

aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures Th and Tl.

bIdealised reversible “petrol” (heat) engine.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat capacities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CV

heat capacity, V constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Q

heat

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Constant

 

 

 

d Q

 

 

 

 

 

 

∂U

 

 

 

 

∂S

 

(5.14)

5

 

 

 

 

 

 

 

 

 

 

 

 

 

 

volume

CV = dT V = ∂T V

= T ∂T V

V

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

U

internal energy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p = T

 

 

p

 

S

entropy

 

 

Constant

 

 

 

 

 

Q

 

 

 

 

 

 

 

 

 

∂H

 

∂S

 

 

heat capacity, p constant

 

 

 

 

 

d

 

 

 

 

 

 

 

 

(5.15)

C

 

 

pressure

Cp = dT

 

 

p = ∂T

 

∂T

p p

pressure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

enthalpy

 

 

 

Cp CV =

∂U

 

 

 

 

+ p

∂V

 

 

(5.16)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Di erence in

∂V

 

T

∂T

 

p

βp

isobaric expansivity

 

 

heat capacities

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V T βp

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

 

 

2

 

 

 

 

 

 

 

 

 

 

(5.17)

κT

isothermal compressibility

 

 

 

 

 

 

 

 

κT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ratio of heat

γ =

Cp

=

 

κT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.18)

γ

ratio of heat capacities

 

 

capacities

CV

 

κS

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

κS

adiabatic compressibility

 

 

Thermodynamic coe cients

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isobaric

1

 

 

∂V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

βp

isobaric expansivity

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.19)

 

 

 

 

expansivitya

βp = V ∂T p

 

 

 

 

 

 

 

 

 

 

 

 

T

temperature

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Isothermal

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

κT

isothermal compressibility

 

 

 

 

 

 

 

 

 

1 ∂V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compressibility

κT = −

 

 

 

 

 

 

 

T

 

 

 

 

 

 

 

 

 

 

 

 

(5.20)

 

 

 

 

V

∂p

 

 

 

 

 

 

 

 

 

 

 

 

p

pressure

 

 

Adiabatic

 

 

 

 

 

1 ∂V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

compressibility

κS = −

V

 

∂p

 

S

 

 

 

 

 

 

 

 

 

 

 

 

(5.21)

κS

adiabatic compressibility

 

 

Isothermal bulk

 

 

 

 

1

 

 

 

 

 

 

 

 

 

 

 

∂p

 

 

 

 

 

 

 

 

 

 

 

 

modulus

KT =

 

 

= −V

 

T

 

 

 

 

 

(5.22)

KT

isothermal bulk modulus

 

 

κT

∂V

 

 

 

 

 

 

 

Adiabatic bulk

1

 

 

 

 

 

 

 

 

 

 

 

 

 

∂p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

modulus

KS =

κS

= −V

∂V

S

 

 

 

 

 

 

(5.23)

KS

adiabatic bulk modulus

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aAlso called “cubic expansivity” or “volume expansivity.” The linear expansivity is αp = βp/3.

108 Thermodynamics

Expansion processes

Joule

a

 

=

 

∂T

U

 

 

 

 

T 2 (p/T )

V

(5.24)

η

Joule coe cient

η

 

∂V

= − CV ∂T

 

p

pressure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

temperature

expansion

 

 

 

1

 

 

 

 

∂p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

T

 

2

 

 

 

 

p

 

 

(5.25)

U

internal energy

 

 

 

CV

 

 

 

 

 

V

 

 

 

 

 

∂T

 

 

 

 

CV

heat capacity, V constant

 

b

µ =

 

∂T

 

 

=

T

p

 

(V /T )

 

 

(5.26)

µ

Joule–Kelvin coe cient

Joule–Kelvin

 

∂p

 

 

C

 

 

 

 

 

∂T

 

 

 

 

V

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H

 

 

 

 

 

 

 

 

 

p

 

expansion

 

 

 

1

 

 

 

∂V

 

 

V

 

 

 

 

H

enthalpy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

T

 

 

 

 

 

 

 

 

(5.27)

Cp

heat capacity, p constant

 

 

 

 

Cp

∂T

p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aExpansion with no change in internal energy.

bExpansion with no change in enthalpy. Also known as a “Joule–Thomson expansion” or “throttling” process.

Thermodynamic potentialsa

 

 

 

U

internal energy

 

dU = T dS pdV + µdN

 

T

temperature

Internal energy

(5.28)

S

entropy

 

 

 

µ

chemical potential

 

 

 

N

number of particles

 

 

 

H

enthalpy

 

H = U + pV

(5.29)

Enthalpy

 

 

dH = T dS + V dp+ µdN

(5.30)

p

pressure

 

V

volume

 

 

 

 

 

 

 

 

Helmholtz free

F = U T S

(5.31)

F

Helmholtz free energy

energyb

dF = −S dT pdV + µdN

(5.32)

 

 

 

 

 

 

G = U T S + pV

(5.33)

 

 

Gibbs free energyc

= F + pV = H T S

(5.34)

G

Gibbs free energy

 

dG = −S dT + V dp+ µdN

(5.35)

 

 

Grand potential

Φ = F µN

(5.36)

Φ

grand potential

 

dΦ = −S dT pdV N dµ

(5.37)

 

 

Gibbs–Duhem

S dT + V dpN dµ = 0

(5.38)

 

 

relation

 

 

 

 

 

A

availability

 

A = U T0S + p0V

(5.39)

Availability

T0

temperature of

 

dA = (T T0)dS − (pp0)dV

(5.40)

 

surroundings

 

p0

pressure of surroundings

a dN=0 for a closed system.

bSometimes called the “work function.”

cSometimes called the “thermodynamic potential.”

5.2 Classical thermodynamics

109

 

 

Maxwell’s relations

 

∂T

 

 

 

 

 

 

∂p

 

 

 

 

 

2U

 

 

 

 

U

internal energy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Maxwell 1

∂V

S

=

 

∂S V

= ∂S∂V

(5.41)

V

volume

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

T

temperature

 

∂T

 

 

 

∂V

 

 

 

2H

 

 

 

 

H

enthalpy

Maxwell 2

 

 

=

 

 

 

 

 

 

= ∂p∂S

 

 

 

(5.42)

p

pressure

∂p S

 

 

∂S p

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

entropy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂p

 

 

 

 

 

∂S

 

 

 

 

 

 

2F

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

 

Maxwell 3

 

 

=

 

 

 

 

 

 

 

 

2

 

(5.43)

F

Helmholtz free energy

∂T V

 

∂V T

 

∂T ∂V

 

∂V

 

 

 

 

 

 

∂S

 

 

 

 

 

∂ G

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

 

Maxwell 4

 

 

=

 

 

 

 

 

 

(5.44)

G

Gibbs free energy

∂T

p

∂p

T

∂p∂T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gibbs–Helmholtz equations

U =

T

2 (F/T )

V

 

 

 

 

 

 

 

 

(5.45)

 

F

Helmholtz free energy

 

 

 

 

 

 

 

 

 

 

 

5

 

 

 

 

 

 

 

 

 

U

internal energy

 

 

 

 

 

 

∂T

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G

Gibbs free energy

 

 

 

 

 

 

 

2 (F/V )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

G =

V

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(5.46)

 

H

enthalpy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂V

T

 

 

 

 

 

 

 

 

 

 

T

temperature

 

 

 

 

 

 

 

 

 

 

2 (G/T )

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

H =

T

 

 

 

 

 

 

 

 

 

 

 

 

(5.47)

 

p

pressure

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

∂T

 

p

 

 

 

 

 

 

 

 

 

 

V

volume

 

 

 

 

 

Phase transitions

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Heat absorbed

 

 

L = T (S2 S1)

 

 

 

(5.48)

 

L

(latent) heat absorbed (1 → 2)

 

 

 

 

 

 

 

T

temperature of phase change

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

S

entropy

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dp

=

S2 S1

 

 

 

(5.49)

 

p

pressure

 

 

Clausius–Clapeyron

 

 

 

 

 

 

 

 

 

dT

 

V2 V1

 

 

 

 

 

V

volume

 

 

equation

a

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

 

 

L

 

 

 

(5.50)

 

1,2

phase states

 

 

 

 

 

 

 

 

 

 

 

 

T (V2 V1)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Coexistence curveb

 

 

p(T )

 

exp

L

 

 

(5.51)

 

R

molar gas constant

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

RT

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dp

=

βp2 βp1

 

 

 

(5.52)

 

βp

isobaric expansivity

 

 

Ehrenfest’s

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

dT

 

κT 2 κT 1

 

 

 

 

 

κT

isothermal compressibility

 

 

equationc

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

=

 

 

1

 

Cp2 Cp1

 

(5.53)

 

Cp

heat capacity (p constant)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

V T βp2 βp1

 

 

P

number of phases in equilibrium

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Gibbs’s phase rule

 

 

P + F = C + 2

 

 

 

(5.54)

 

F

number of degrees of freedom

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C

number of components

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the “Clapeyron equation.” bFor V2 V1, e.g., if phase 1 is a liquid and phase 2 a vapour.

cFor a second-order phase transition.