- •Contents
- •Preface
- •How to use this book
- •Chapter 1 Units, constants, and conversions
- •1.1 Introduction
- •1.2 SI units
- •1.3 Physical constants
- •1.4 Converting between units
- •1.5 Dimensions
- •1.6 Miscellaneous
- •Chapter 2 Mathematics
- •2.1 Notation
- •2.2 Vectors and matrices
- •2.3 Series, summations, and progressions
- •2.5 Trigonometric and hyperbolic formulas
- •2.6 Mensuration
- •2.8 Integration
- •2.9 Special functions and polynomials
- •2.12 Laplace transforms
- •2.13 Probability and statistics
- •2.14 Numerical methods
- •Chapter 3 Dynamics and mechanics
- •3.1 Introduction
- •3.3 Gravitation
- •3.5 Rigid body dynamics
- •3.7 Generalised dynamics
- •3.8 Elasticity
- •Chapter 4 Quantum physics
- •4.1 Introduction
- •4.3 Wave mechanics
- •4.4 Hydrogenic atoms
- •4.5 Angular momentum
- •4.6 Perturbation theory
- •4.7 High energy and nuclear physics
- •Chapter 5 Thermodynamics
- •5.1 Introduction
- •5.2 Classical thermodynamics
- •5.3 Gas laws
- •5.5 Statistical thermodynamics
- •5.7 Radiation processes
- •Chapter 6 Solid state physics
- •6.1 Introduction
- •6.2 Periodic table
- •6.4 Lattice dynamics
- •6.5 Electrons in solids
- •Chapter 7 Electromagnetism
- •7.1 Introduction
- •7.4 Fields associated with media
- •7.5 Force, torque, and energy
- •7.6 LCR circuits
- •7.7 Transmission lines and waveguides
- •7.8 Waves in and out of media
- •7.9 Plasma physics
- •Chapter 8 Optics
- •8.1 Introduction
- •8.5 Geometrical optics
- •8.6 Polarisation
- •8.7 Coherence (scalar theory)
- •8.8 Line radiation
- •Chapter 9 Astrophysics
- •9.1 Introduction
- •9.3 Coordinate transformations (astronomical)
- •9.4 Observational astrophysics
- •9.5 Stellar evolution
- •9.6 Cosmology
- •Index
Chapter 5 Thermodynamics
5.1Introduction
The term thermodynamics is used here loosely and includes classical thermodynamics, statistical thermodynamics, thermal physics, and radiation processes. Notation in these subjects can be confusing and the conventions used here are those found in the majority of modern treatments. In particular:
• The internal energy of a system is defined in terms of the heat supplied to the system plus
the work done on the system, that is, dU = d Q+ d W .
5
•The lowercase symbol p is used for pressure. Probability density functions are denoted by pr(x) and microstate probabilities by pi.
•With the exception of specific intensity, quantities are taken as specific if they refer to unit mass and are distinguished from the extensive equivalent by using lowercase. Hence specific
volume, v, equals V /m, where V is the volume of gas and m its mass. Also, the specific heat capacity of a gas at constant pressure is cp = Cp/m, where Cp is the heat capacity of mass m of gas. Molar values take a subscript “m” (e.g., Vm for molar volume) and remain in upper case.
• The component held constant during a partial di erentiation is shown after a vertical bar;
hence ∂V is the partial di erential of volume with respect to pressure, holding temperature constant∂p. T
The thermal properties of solids are dealt with more explicitly in the section on solid state physics (page 123). Note that in solid state literature specific heat capacity is often taken to mean heat capacity per unit volume.
106 |
Thermodynamics |
|
|
5.2 Classical thermodynamics
Thermodynamic laws
Thermodynamic |
T |
lim(pV ) |
(5.1) |
|||||||||||||||
temperaturea |
||||||||||||||||||
|
p |
→ |
0 |
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
Kelvin |
|
|
|
|
|
|
|
|
|
|
|
|
lim(pV )T |
|
||||
T /K = 273.16 |
p→0 |
(5.2) |
||||||||||||||||
temperature scale |
||||||||||||||||||
lim(pV )tr |
||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
p→0 |
|
||||
First lawb |
|
|
|
|
|
|
|
W |
(5.3) |
|||||||||
dU = d |
Q+ d |
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
Qrev |
|
|
|
|
|
Q |
|
|
||||
Entropyc |
|
|
|
d |
|
|
|
d |
|
|||||||||
dS = |
|
|
|
|
|
T |
≥ T |
(5.4) |
||||||||||
|
|
|
|
|
|
|||||||||||||
Tthermodynamic temperature
Vvolume of a fixed mass of gas
pgas pressure
Kkelvin unit
tr |
temperature of the triple point |
|
of water |
dU change in internal energy
d W work done on system
d Q heat supplied to system
Sexperimental entropy
Ttemperature
rev reversible change
aAs determined with a gas thermometer. The idea of temperature is associated with the zeroth law of thermodynamics: If two systems are in thermal equilibrium with a third, they are also in thermal equilibrium with each other.
bThe d notation represents a di erential change in a quantity that is not a function of state of the system.
cAssociated with the second law of thermodynamics: No process is possible with the sole e ect of completely converting heat into work (Kelvin statement).
Thermodynamic worka
Hydrostatic |
|
|
|
|
p |
(hydrostatic) pressure |
|||
d W = −p dV |
(5.5) |
||||||||
pressure |
dV |
volume change |
|||||||
|
|
|
|
|
|
|
W work done on the system |
||
|
|
|
|
|
d |
||||
Surface tension |
|
|
W = γ dA |
(5.6) |
|
|
|
|
|
d |
γ |
surface tension |
|||||||
|
|
|
|
|
dA |
change in area |
|||
|
|
|
|
|
E |
electric field |
|||
|
|
|
|
|
|||||
Electric field |
d W = E · dp |
(5.7) |
|||||||
dp |
induced electric dipole moment |
||||||||
|
|
|
|
|
B |
magnetic flux density |
|||
Magnetic field |
d W = B · dm |
(5.8) |
|||||||
dm |
induced magnetic dipole moment |
||||||||
|
|
|
|
|
∆φ |
potential di erence |
|||
Electric current |
d W = ∆φ dq |
(5.9) |
|||||||
dq |
charge moved |
||||||||
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
aThe sources of electric and magnetic fields are taken as being outside the thermodynamic system on which they are working.
5.2 Classical thermodynamics |
107 |
|
|
Cycle e ciencies (thermodynamic)a
|
|
work extracted |
|
|
|
Th − Tl |
|
|
|
η |
e ciency |
|||||||||
Heat engine |
η = |
|
|
|
|
|
(5.10) |
Th |
higher temperature |
|||||||||||
|
|
|
||||||||||||||||||
|
|
heat input |
|
|
≤ |
|
Th |
|
|
Tl |
lower temperature |
|||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Refrigerator |
|
heat extracted |
|
|
|
|
|
|
Tl |
|
|
|
|
|
|
|
|
|
||
η = |
work done |
|
≤ Th |
− |
Tl |
|
(5.11) |
|
|
|||||||||||
|
|
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Heat pump |
|
heat supplied |
|
|
|
|
|
Th |
|
|
|
|
|
|
|
|
|
|
||
η = |
work done |
≤ Th |
− |
Tl |
|
(5.12) |
|
|
||||||||||||
|
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
γ−1 |
|
V1 |
compression ratio |
|
|
|
work extracted |
|
|
|
|
|
|
|
V2 |
|
V2 |
||||||||
b |
|
|
|
|
|
|
|
|
|
|
||||||||||
Otto cycle |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
γ ratio of heat capacities |
|
η = |
heat input |
|
|
= 1 − V1 |
|
(5.13) |
||||||||||||||
|
|
|
|
(assumed constant) |
||||||||||||||||
aThe equalities are for reversible cycles, such as Carnot cycles, operating between temperatures Th and Tl. |
||||||||||||||||||||
bIdealised reversible “petrol” (heat) engine. |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Heat capacities
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
CV |
heat capacity, V constant |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Q |
heat |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Constant |
|
|
|
d Q |
|
|
|
|
|
|
∂U |
|
|
|
|
∂S |
|
(5.14) |
5 |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||
volume |
CV = dT V = ∂T V |
= T ∂T V |
V |
volume |
|
||||||||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
temperature |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
U |
internal energy |
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
p = T |
|
|
p |
|
S |
entropy |
|
|
||||||
Constant |
|
|
|
|
|
Q |
|
|
|
|
|
|
|
|
|
∂H |
|
∂S |
|
|
heat capacity, p constant |
|
|
||||||||||||||||
|
|
|
d |
|
|
|
|
|
|
|
|
(5.15) |
C |
|
|
||||||||||||||||||||||||
pressure |
Cp = dT |
|
|
p = ∂T |
|
∂T |
p p |
pressure |
|
|
|||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H |
enthalpy |
|
|
|||||||
|
Cp − CV = |
∂U |
|
|
|
|
+ p |
∂V |
|
|
(5.16) |
|
|
|
|
||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||||||||
Di erence in |
∂V |
|
T |
∂T |
|
p |
βp |
isobaric expansivity |
|
|
|||||||||||||||||||||||||||||
heat capacities |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V T βp |
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
= |
|
|
|
|
|
|
|
|
2 |
|
|
|
|
|
|
|
|
|
|
(5.17) |
κT |
isothermal compressibility |
|
|
|||||||||||
|
|
|
|
|
|
κT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
Ratio of heat |
γ = |
Cp |
= |
|
κT |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.18) |
γ |
ratio of heat capacities |
|
|
||||||||||
capacities |
CV |
|
κS |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
κS |
adiabatic compressibility |
|
|
|||||||||||||
Thermodynamic coe cients |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Isobaric |
1 |
|
|
∂V |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
βp |
isobaric expansivity |
|
|
||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.19) |
|
|
|
|
||||||||||||||
expansivitya |
βp = V ∂T p |
|
|
|
|
|
|
|
|
|
|
|
|
T |
temperature |
|
|
||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V |
volume |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
Isothermal |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
κT |
isothermal compressibility |
|
|
|||
|
|
|
|
|
|
|
1 ∂V |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||||
compressibility |
κT = − |
|
|
|
|
|
|
|
T |
|
|
|
|
|
|
|
|
|
|
|
|
(5.20) |
|
|
|
|
|||||||||||||
V |
∂p |
|
|
|
|
|
|
|
|
|
|
|
|
p |
pressure |
|
|
||||||||||||||||||||||
Adiabatic |
|
|
|
|
|
1 ∂V |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
compressibility |
κS = − |
V |
|
∂p |
|
S |
|
|
|
|
|
|
|
|
|
|
|
|
(5.21) |
κS |
adiabatic compressibility |
|
|
||||||||||||||||
Isothermal bulk |
|
|
|
|
1 |
|
|
|
|
|
|
|
|
|
|
|
∂p |
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
modulus |
KT = |
|
|
= −V |
|
T |
|
|
|
|
|
(5.22) |
KT |
isothermal bulk modulus |
|
|
|||||||||||||||||||||||
κT |
∂V |
|
|
|
|
|
|
|
|||||||||||||||||||||||||||||||
Adiabatic bulk |
1 |
|
|
|
|
|
|
|
|
|
|
|
|
|
∂p |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
modulus |
KS = |
κS |
= −V |
∂V |
S |
|
|
|
|
|
|
(5.23) |
KS |
adiabatic bulk modulus |
|
|
|||||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aAlso called “cubic expansivity” or “volume expansivity.” The linear expansivity is αp = βp/3.
108 Thermodynamics
Expansion processes
Joule |
a |
|
= |
|
∂T |
U |
|
|
|
|
T 2 ∂(p/T ) |
V |
(5.24) |
η |
Joule coe cient |
||||||||||
η |
|
∂V |
= − CV ∂T |
|
p |
pressure |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
temperature |
|
expansion |
|
|
|
1 |
|
|
|
|
∂p |
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||
|
|
|
= |
|
|
|
|
|
|
T |
|
2 |
|
|
|
|
p |
|
|
(5.25) |
U |
internal energy |
|||
|
|
|
− CV |
|
|
|
|
|
V − |
||||||||||||||||
|
|
|
|
|
∂T |
|
|
|
|
CV |
heat capacity, V constant |
||||||||||||||
|
b |
µ = |
|
∂T |
|
|
= |
T |
p |
|
∂(V /T ) |
|
|
(5.26) |
µ |
Joule–Kelvin coe cient |
|||||||||
Joule–Kelvin |
|
∂p |
|
|
C |
|
|
|
|
|
∂T |
|
|
|
|
V |
volume |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
H |
|
|
|
|
|
|
|
|
|
p |
|
|||||||||||
expansion |
|
|
|
1 |
|
|
|
∂V |
|
|
− V |
|
|
|
|
H |
enthalpy |
||||||||
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
= |
|
|
|
T |
|
|
|
|
|
|
|
|
(5.27) |
Cp |
heat capacity, p constant |
|||||||
|
|
|
|
Cp |
∂T |
p |
|
|
|
||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aExpansion with no change in internal energy.
bExpansion with no change in enthalpy. Also known as a “Joule–Thomson expansion” or “throttling” process.
Thermodynamic potentialsa
|
|
|
U |
internal energy |
|
dU = T dS − pdV + µdN |
|
T |
temperature |
Internal energy |
(5.28) |
S |
entropy |
|
|
|
|
µ |
chemical potential |
|
|
|
N |
number of particles |
|
|
|
H |
enthalpy |
|
H = U + pV |
(5.29) |
||
Enthalpy |
|
|
||
dH = T dS + V dp+ µdN |
(5.30) |
p |
pressure |
|
|
V |
volume |
||
|
|
|
||
|
|
|
|
|
Helmholtz free |
F = U − T S |
(5.31) |
F |
Helmholtz free energy |
energyb |
dF = −S dT − pdV + µdN |
(5.32) |
|
|
|
|
|
||
|
G = U − T S + pV |
(5.33) |
|
|
Gibbs free energyc |
= F + pV = H − T S |
(5.34) |
G |
Gibbs free energy |
|
dG = −S dT + V dp+ µdN |
(5.35) |
|
|
Grand potential |
Φ = F − µN |
(5.36) |
Φ |
grand potential |
|
dΦ = −S dT − pdV − N dµ |
(5.37) |
|
|
Gibbs–Duhem |
−S dT + V dp− N dµ = 0 |
(5.38) |
|
|
relation |
|
|
||
|
|
|
A |
availability |
|
A = U − T0S + p0V |
(5.39) |
||
Availability |
T0 |
temperature of |
||
|
dA = (T − T0)dS − (p− p0)dV |
(5.40) |
|
surroundings |
|
p0 |
pressure of surroundings |
a dN=0 for a closed system.
bSometimes called the “work function.”
cSometimes called the “thermodynamic potential.”
5.2 Classical thermodynamics |
109 |
|
|
Maxwell’s relations
|
∂T |
|
|
|
|
|
|
∂p |
|
|
|
|
|
∂2U |
|
|
|
|
U |
internal energy |
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||
Maxwell 1 |
∂V |
S |
= |
|
− ∂S V |
= ∂S∂V |
(5.41) |
V |
volume |
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
T |
temperature |
|
∂T |
|
|
|
∂V |
|
|
|
∂2H |
|
|
|
|
H |
enthalpy |
||||||||
Maxwell 2 |
|
|
= |
|
|
|
|
|
|
= ∂p∂S |
|
|
|
(5.42) |
p |
pressure |
|||||||
∂p S |
|
|
∂S p |
|
|
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
entropy |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
∂p |
|
|
|
|
|
∂S |
|
|
|
|
|
|
∂2F |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
|
|||||||||
Maxwell 3 |
|
|
= |
|
|
|
|
|
|
|
|
2 |
|
(5.43) |
F |
Helmholtz free energy |
|||||||
∂T V |
|
∂V T |
|
∂T ∂V |
|||||||||||||||||||
|
∂V |
|
|
|
|
|
|
∂S |
|
|
|
|
|
∂ G |
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
= |
|
|
|
|
|
||||||||||
Maxwell 4 |
|
|
= |
− |
|
|
|
|
|
|
(5.44) |
G |
Gibbs free energy |
||||||||||
∂T |
p |
∂p |
T |
∂p∂T |
|||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Gibbs–Helmholtz equations
U = |
− |
T |
2 ∂(F/T ) |
V |
|
|
|
|
|
|
|
|
(5.45) |
|
F |
Helmholtz free energy |
|
|
|
|||||||||
|
|
|
|
|
|
|
|
5 |
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
U |
internal energy |
|
|
|
|
||||||||||||||
|
|
∂T |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
G |
Gibbs free energy |
|
|
|
||||||||
|
|
|
|
2 ∂(F/V ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
G = |
− |
V |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
(5.46) |
|
H |
enthalpy |
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
∂V |
T |
|
|
|
|
|
|
|
|
|
|
T |
temperature |
|
|
|
|
|
||||
|
|
|
|
|
2 ∂(G/T ) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
H = |
− |
T |
|
|
|
|
|
|
|
|
|
|
|
|
(5.47) |
|
p |
pressure |
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||
|
|
|
|
|
∂T |
|
p |
|
|
|
|
|
|
|
|
|
|
V |
volume |
|
|
|
|
|
||||
Phase transitions |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||
Heat absorbed |
|
|
L = T (S2 − S1) |
|
|
|
(5.48) |
|
L |
(latent) heat absorbed (1 → 2) |
|
|||||||||||||||||
|
|
|
|
|
|
T |
temperature of phase change |
|
||||||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
S |
entropy |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
dp |
= |
S2 − S1 |
|
|
|
(5.49) |
|
p |
pressure |
|
|
||||||
Clausius–Clapeyron |
|
|
|
|
|
|
|
|
||||||||||||||||||||
|
dT |
|
V2 − V1 |
|
|
|
|
|
V |
volume |
|
|
||||||||||||||||
equation |
a |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||
|
|
|
|
|
|
|
|
= |
|
|
|
|
L |
|
|
|
(5.50) |
|
1,2 |
phase states |
|
|
||||||
|
|
|
|
|
|
|
|
|
|
T (V2 − V1) |
|
|
|
|||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||
Coexistence curveb |
|
|
p(T ) |
|
exp |
−L |
|
|
(5.51) |
|
R |
molar gas constant |
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
RT |
|
|
|
|
|
|
|
|
|||||
|
|
|
|
|
|
|
|
|
|
|
dp |
= |
βp2 − βp1 |
|
|
|
(5.52) |
|
βp |
isobaric expansivity |
|
|
||||||
Ehrenfest’s |
|
|
|
|
|
|
|
|
|
|
|
|
|
|||||||||||||||
|
|
|
|
|
|
dT |
|
κT 2 − κT 1 |
|
|
|
|
|
κT |
isothermal compressibility |
|
|
|||||||||||
equationc |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||||
|
|
|
|
|
|
|
|
|
|
= |
|
|
1 |
|
Cp2 − Cp1 |
|
(5.53) |
|
Cp |
heat capacity (p constant) |
|
|||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
V T βp2 − βp1 |
|
|
P |
number of phases in equilibrium |
|
|
||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|||
Gibbs’s phase rule |
|
|
P + F = C + 2 |
|
|
|
(5.54) |
|
F |
number of degrees of freedom |
|
|||||||||||||||||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
C |
number of components |
|
||
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
aPhase boundary gradient for a first-order transition. Equation (5.50) is sometimes called the “Clapeyron equation.” bFor V2 V1, e.g., if phase 1 is a liquid and phase 2 a vapour.
cFor a second-order phase transition.
