
- •Лабораторные работы по механике
- •Предисловие
- •Введение Место физики среди естественных наук и роль измерений в физике
- •Порядок работы в лаборатории
- •Виды физических измерений
- •Единицы измерения
- •I. Элементы теории погрешностей Ошибки измерения (погрешности) и причины их возникновения
- •Определение величины ошибки при прямых измерениях
- •Коэффициенты Стьюдента
- •Относительная ошибка
- •Пример записи результатов прямых измерений
- •Функция нескольких переменных (ошибки косвенных измерений)
- •Способы уменьшения ошибки измерения
- •Некоторые правила приближенных вычислений
- •Графическое представление результатов
- •II. Простейшие физические измерения Линейный нониус и штангенциркуль
- •Микрометрический винт и микрометр
- •Угловой нониус и оптический угломер
- •Технические весы
- •Аналитические весы
- •Электрические весы
- •Торсионные весы
- •Общие правила работы с весами
- •Лабораторная работа № 1 Проверка градуировки шкалы весов и определение их чувствительности
- •Краткая теория работы
- •Ход работы
- •Контрольные вопросы
- •Лабораторная работа № 2 определение массы капли воды
- •Краткая теория работы
- •Ход работы
- •Контрольные вопросы
- •Лабораторная работа № 3 Измерение линейных и угловых размеров твердого тела
- •Форма отчета по лабораторной работе № 3
- •I. Измерения штангенциркулем
- •Контрольные вопросы
- •Лабораторная работа № 4 Определение объема и плотности твердого тела
- •Краткая теория работы
- •Ход работы
- •Форма отчета по лабораторной работе № 4
- •II. Определение плотности твердого тела неправильной формы Ход работы
- •Контрольные вопросы
- •Порядок взвешивания
- •Задание
- •Лабораторная работа № 7 изучение динамики поступательного и вращательного движения на установке
- •Теоретические основы работы
- •Определение ускорения поступательного движения груза на машине Атвуда
- •Определение момента сил трения в подшипнике блока машины Атвуда
- •Определение работы сил трения в машине Атвуда
- •Определение времени запаздывания при срабатывании фрикциона
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 8 изучение законов сохранения при соударении двух шаров
- •Теоретические основы работы
- •Определение средней силы взаимодействия при ударе шаров равной массы
- •Определение массы одного из шаров при их неупругом соударении
- •Определение среднего момента относительно точки подвеса, создаваемого силой, возникающей при взаимодействии упругих шаров
- •8.3. Схема абсолютно упругого удара 8.4. Область существенного смятия при абсолютно упругом ударе двух шаров
- •Определение средней силы взаимодействия соударяющихся шаров по радиусу площади их смятия в момент соударения
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданииях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 9 изучение динамики вращательного движения на крестообразном маятнике (маятник обербека)
- •Теоретические основы работы
- •Определение момента инерции грузов, находящихся на стержнях маятника Обербека
- •Определение момента инерции маятника Обербека с учетом сил трения в подшипнике маятника
- •Определение момента сил трения в подшипнике маятника Обербека
- •Определение отношения моментов сил, действующих на маятник Обербека при его движении, для случаев, когда нить намотана на шкивы радиусами r1 и r2
- •Проверка формулы для периода колебаний физического маятника на установке “Маятник Обербека”
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблица результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 10 изучение плоского движения твердого тела с помощью маятника максвелла
- •Теоретические основы работы
- •Определение момента инерции маятника Максвелла
- •Отметим, что если нить не проскальзывает во время движения, то
- •Здесь Iв- момент инерции вала; Iд- момент инерции диска; Iк - момент инерции кольца. Проводя расчеты с использованием формулы для определения момента инерции
- •Определение моментов инерции элементов маятника Максвелла с использованием закона сохранения механической энергии
- •Определение средней силы натяжения нитей в момент «рывка» при движении маяника Максвелла
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок выполнения работы в заданиях
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 11 изучение крутильных колебаний на унифилярном подвесе
- •Теоретические основы работы
- •Определение момента инерции параллелепипеда методом крутильных колебаний
- •Изучение зависимости периода колебаний крутильного маятника от начального угла отклонения
- •Описание экспериментальной установки
- •Задания на проведение работы
- •Порядок проведения работы в заданиях
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная № 12 Изучение колебаний физического и математического маятников
- •Теоретические основы работы
- •Определение ускорения силы тяжести с помощью оборотного маятника
- •Определение положения центра тяжести физического маятника
- •Экспериментальное определение момента инерции тела сложной формы методом малых колебаний
- •Проверка теоремы Гюйгенса-Штейнера методом малых колебаний
- •Описание экспериментальной установки
- •Задание на проведение работы
- •Порядок выполнения работы в задании
- •Данные установки и таблицы результатов измерений
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа № 13 определение коэффициента внутреннего трения жидкости по методу стокса
- •Теоретические основы работы
- •Описание установки. Вывод расчетных формул
- •Порядок выполнения работы
- •Данные установки и таблица результатов измерения
- •Обработка результатов измерений
- •Контрольные вопросы и задания
- •Лабораторная работа №14 сухое трение. Определение коэффициента трения скольжения
- •Краткие теоретические сведения
- •Динамический метод определения коэффициента трения скольжения
- •Энергетический метод определения коэффициента трения скольжения
- •Ход работы и обработка результатов измерения
- •Контрольные вопросы
- •Упражнение 1 Определение коэффициента трения скольжения
- •Описание установки
- •Измерения
- •Упражнение 2 Определение коэффициента трения качения
- •Принцип работы прибора. Подготовка к измерениям
- •Измерения
- •Контрольные вопросы
- •Лабораторная работа № 16 Определение ускорения силы тяжести при свободном падении тела
- •Природа сил. Классификация взаимодействий
- •Электромагнитные взаимодействия
- •Консервативные и неконсервативные силы
- •Теория метода и описание установки
- •Измерения и обработка результатов измерения
- •Фундаментальные взаимодействия Понятие силы
- •Контрольные вопросы
- •2 Способ.
- •Измерение и обработка результатов измерения
- •Контрольные вопросы
- •Лабораторная работа № 18 изучение затузающих колебаний
- •Порядок выполнения
- •Контрольные вопросы
- •Лабораторная работа № 19 исследование свойств гироскопа
- •Перечень механических подузлов гироскопа грм-10 /рис.19.1/
- •Подготовка гироскопа к работе. Определение угла прецессии и расчет скорости прецессии гироскопа.
- •1. Проверить заземление прибора.
- •Исследование зависимости прецессии гироскопа от перемещения грузика
- •Приложение
- •Основные физические константы
- •Коэффициент внутреннего трения некоторых жидкостей
- •Литература
- •Содержание
Виды физических измерений
Измерение – это нахождение значения физической опытным путем с помощью специальных технических средств измерений (приборов). Измерения основаны на совокупности физических явлений и физических закономерностей, описывающих эти явления, представляющих собой принцип измерений. В основе измерения лежит сравнение исследуемой величины с общепринятым эталоном.
Различают два вида физических измерений: прямые и косвенные. В случае прямых измерений результат получается непосредственно по прибору. Если прибор – цифровой, то записывается соответствующая цифра. Если прибор шкальный, то снимается показание по шкале прибора. Таким образом, прямым называется измерение, при котором искомое значение величины находят непосредственно из опытных данных (например, измерение времени секундомером).
В некоторых ситуациях нет возможности определить величину по прибору: либо отсутствует соответствующий прибор (например, нет спидометра для определения скорости, но есть рулетка и часы); либо измерение величины влечет за собой кардинальное изменение процесса (энергия может быть определена только при совершении работы). В этом случае проводят косвенныеизмерения, при которых искомое значение величины находят на основании прямых измерений физических величин, связанных между собой определенной зависимостьюy=f(x1,x2,…,xn), где у – значение измеряемой величины,x1,x2, …,xn – значения величин, получающихся при прямых измерениях. Например, к косвенным измерениям можно отнести нахождение плотности тела:=m/V.
Единицы измерения
Как уже было указано, в основе любого вида измерения лежит сравнение определяемой величины с другой, принятой за эталон. Для обеспечения однозначности различных измерений, произведенных как одним и тем же, так и разными экспериментаторами были введены единицы измерения. Единица измерения является величиной того же рода, что и сама измеряемая величина. Следовательно, должно существовать, по меньшей мере, столько же единиц измерения, сколько существует самих величин.
Выбор величины единицы измерения может быть совершенно произвольным. Но если единицы измерения всех физических величин установить независимо друг от друга, то в формулах, связывающих разные физические величины, появится много переводных коэффициентов. Это приведет не только к необходимости вводить эти коэффициенты в теорию науки, их запоминанию, но и к усложнению вычислений и, как следствие, усложнению дальнейшего пути познания и развития науки. Поэтому произвольно установили единицы измерения для минимального числа величин, по которым, благодаря зависимостям между физическими величинами, определили все остальные единицы измерения.
Физические величины, единицы измерения которых выбраны произвольно, называются основными. Их единицы измерения называют также основными. Физические величины, единицы которых установлены с помощью функциональной зависимости от основных величин, называютсяпроизводнымивеличинами. Их единицы измерения называют также производными.
Совокупность основных и производных единиц измерения называют системойединицизмерения. В настоящее время в России в качестве предпочитаемой принятаМеждународная системаединиц измерения –СИ.
В этой системе основными являются:
Длина |
метр |
м |
Масса |
килограмм |
кг |
Время |
секунда |
с |
Сила электрического тока |
ампер |
А |
Термодинамическая температура |
кельвин |
К |
Сила света |
кандела |
кд |
Количество вещества |
моль |
моль |
В системе СИ имеются две дополнительныевеличины и соответствующие единицы:
Плоский угол |
радиан |
рад |
Телесный угол |
стерадиан |
стер |