
- •Часть 2
- •Введение
- •1. Кинематика точки
- •1.1. Скорость точки
- •1.2. Ускорение точки
- •1.3. Векторный способ изучения движения
- •1.4. Координатный способ изучения движения Задание движения и траектория
- •Скорость в декартовых координатах
- •Уравнение годографа вектора скорости
- •Ускорение точки в декартовых координатах
- •1.5. Естественный способ изучения движения Естественный способ задания движения
- •Скорость точки при естественном способе задания движения
- •Геометрические понятия. Дифференцирование единичного вектора
- •Ускорение точки при естественном способе задания движения
- •Частные случаи движения точки
- •1.6. Скорость и ускорение точки в полярных координатах
- •1.7. Скорость и ускорение точки в цилиндрических координатах
- •1.8. Скорость и ускорение точки в криволинейных координатах
- •Скорость точки в криволинейных координатах
- •Ускорение в ортогональных криволинейных координатах
- •1.9. Скорость и ускорение точки в сферических координатах
- •2. Простейшие движения твердого тела. Сложное движение точки
- •2.1. Степени свободы и теорема о проекциях скоростей
- •2.2. Поступательное движение твердого тела
- •2.3. Вращение твердого тела вокруг неподвижной оси Угол поворота, угловая скорость и угловое ускорение
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.4. Сложное движение точки Основные понятия
- •Сложение скоростей
- •Сложение ускорений при поступательном переносном движении
- •3. Плоское движение твердого тела
- •3.1. Уравнения плоского движения твердого тела
- •3.2. Разложение плоского движения твердого тела на поступательное и вращательное
- •3.3. Угловая скорость и угловое ускорение тела при плоском движении
- •3.4. Скорости точек тела при плоском движении
- •3.5. Мгновенный центр скоростей
- •3.6. Вычисление угловой скорости при плоском движении
- •3.7. Ускорения точек тела при плоском движении
- •3.8. Мгновенный центр ускорений
- •3.9. Основные способы вычисления углового ускорения при плоском движении
- •3.10. Теорема о конечном перемещении плоской фигуры
- •4.10. Мгновенный центр вращения. Центроиды
- •4. Вращение твердого тела вокруг неподвижной точки. Общий случай движения тела
- •4.1. Углы эйлера. Уравнения вращения твердого тела вокруг неподвижной точки
- •4.2. Теорема о конечном перемещении твердого тела, имеющего одну неподвижную точку
- •4.3. Мгновенная ось вращения. Аксоиды
- •4.4. Угловая скорость и угловое ускорение при вращении тела вокруг неподвижной точки
- •4.5. Скорости точек тела при вращательном движении вокруг неподвижной точки
- •4.6. Ускорения точек тела при вращении вокруг неподвижной точки
- •4.7. Вычисление углового ускорения
- •4.8. Общий случай движения свободного твердого тела Разложение движения свободного твердого тела на поступательное и вращательное
- •Уравнения движения свободного твердого тела
- •Скорости и ускорения точек свободного твердого тела в общем случае
- •5. Сложное движение точки в общем случае
- •5.1. Абсолютная и относительная производные от вектора. Формула бура
- •5.2. Сложение скоростей
- •5.3. Сложение ускорений точки в общем случае переносного движения
- •5.4. Ускорение кориолиса
- •6. Сложение движений твердого тела
- •6.1. Сложение поступательных движений твердого тела
- •6.2. Сложение вращательных движений твердого тела Сложение вращений вокруг пересекающихся осей
- •Сложение вращений вокруг параллельных осей
- •6.3. Сложение поступательного и вращательного движений твердого тела
- •Скорость поступательного движения перпендикулярна оси относительного вращения
- •В Рис. 80 Рис. 80 интовое движение
- •Общий случай
- •6.4. Статические аналогии в кинематике
- •Заключение
- •Библиографический список
- •Оглавление
- •Часть 2
- •394026 Воронеж, Московский просп., 14
Ускорение точки при естественном способе задания движения
Учитывая, что для
скорости точки имеем
,
в соответствии с определением ускорения
получаем
, (17)
так как
и
направлен внутрь вогнутости траектории
параллельно единичному вектору главной
нормали
.
Получено разложение ускорения точки по осям естественного трехгранника. Часть ускорения
,
называется касательной составляющей ускорения. Другая часть ускорения
называется нормальной составляющей ускорения. Она направлена внутрь вогнутости траектории, т.е. в сторону положительного направления единичного вектора главной нормали , так как внутрь вогнутости траектории направлено полное ускорение. Таким образом, ускорение точки
. (18)
Из (17) получим формулы для проекций ускорения на естественные оси. Имеем:
,
,
. (19)
Проекция ускорения на положительное направление касательной, совпадающее с направлением единичного вектора , называется касательным ускорением, а на главную нормаль, направленную по единичному вектору , – нормальным ускорением. Проекция ускорения на бинормаль, направленную по единичному вектору , равна нулю; следовательно, ускорение точки расположено в соприкасающейся плоскости траектории. В этой плоскости находятся единичные векторы касательной и главной нормали.
У
читывая
ортогональность
и
(рис. 16), в соответствии с уравнением
(18) имеем:
,
.
(20)
Н
Рис. 16
направлена в положительную сторону
касательной, т.е. по направлению единичного
вектора
,
а при
– в отрицательную, противоположно
.
При и векторы скорости и касательной составляющей ускорения направлены в одну сторону – по . Движение точки является ускоренным в положительном направлении касательной к траектории. При и опять векторы скорости и касательной составляющей ускорения имеют одинаковые направления и, следовательно, движение точки является ускоренным, но в отрицательном направлении касательной к траектории.
Если и , то вектор скорости направлен по , а вектор касательной составляющей ускорения противоположен ему по направлению. Движение точки является замедленным в положительном направлении касательной к траектории. При и имеем замедленное движение точки в отрицательную сторону касательной к траектории точки.
Случаи обращения в нуль касательного ускорения получают из условия
.
Это условие
выполняется все время, пока
,
т.е. при равномерном
движении точки по траектории любой
формы. Касательное ускорение обращается
в нуль также в те моменты времени, в
которые алгебраическая скорость
достигает экстремума, например максимума
или минимума.
Д
Рис. 17
и
.
При колебаниях маятника (рис. 18) эти
моменты соответствуют его прохождению
через точку
.
При движении маятника в одну сторону
алгебраическая скорость в точке
достигает максимума, при движении в
обратном направлении – минимума. Случаи
обращения в нуль нормального ускорения
следуют из условия:
.
Э
Рис. 18
Рис. 19
,
т.е. при прямолинейном движении точки.
При движении точки по криволинейной
траектории
в точках перегиба, в которых происходит
изменение выпуклости траектории на
вогнутость, и наоборот (рис. 19). Нормальное
ускорение обращается также в нуль в
моменты времени, в которые
,
т.е. в моменты изменения направления
движения точки по траектории. Для
маятника такими моментами являются
моменты отклонения маятника на наибольший
угол как в одну сторону, так и в другую.
Эти моменты соответствуют мгновенным
остановкам маятника.
Случаи обращения в нуль касательного и нормального ускорений, а также общие формулы для них показывают, что касательное ускорение характеризует изменение вектора скорости по величине, а нормальное – по направлению.