
- •Часть 2
- •Введение
- •1. Кинематика точки
- •1.1. Скорость точки
- •1.2. Ускорение точки
- •1.3. Векторный способ изучения движения
- •1.4. Координатный способ изучения движения Задание движения и траектория
- •Скорость в декартовых координатах
- •Уравнение годографа вектора скорости
- •Ускорение точки в декартовых координатах
- •1.5. Естественный способ изучения движения Естественный способ задания движения
- •Скорость точки при естественном способе задания движения
- •Геометрические понятия. Дифференцирование единичного вектора
- •Ускорение точки при естественном способе задания движения
- •Частные случаи движения точки
- •1.6. Скорость и ускорение точки в полярных координатах
- •1.7. Скорость и ускорение точки в цилиндрических координатах
- •1.8. Скорость и ускорение точки в криволинейных координатах
- •Скорость точки в криволинейных координатах
- •Ускорение в ортогональных криволинейных координатах
- •1.9. Скорость и ускорение точки в сферических координатах
- •2. Простейшие движения твердого тела. Сложное движение точки
- •2.1. Степени свободы и теорема о проекциях скоростей
- •2.2. Поступательное движение твердого тела
- •2.3. Вращение твердого тела вокруг неподвижной оси Угол поворота, угловая скорость и угловое ускорение
- •Частные случаи вращения твердого тела
- •Скорости и ускорения точек тела
- •Векторы угловой скорости и углового ускорения
- •Векторные формулы для скоростей и ускорений точек тела
- •2.4. Сложное движение точки Основные понятия
- •Сложение скоростей
- •Сложение ускорений при поступательном переносном движении
- •3. Плоское движение твердого тела
- •3.1. Уравнения плоского движения твердого тела
- •3.2. Разложение плоского движения твердого тела на поступательное и вращательное
- •3.3. Угловая скорость и угловое ускорение тела при плоском движении
- •3.4. Скорости точек тела при плоском движении
- •3.5. Мгновенный центр скоростей
- •3.6. Вычисление угловой скорости при плоском движении
- •3.7. Ускорения точек тела при плоском движении
- •3.8. Мгновенный центр ускорений
- •3.9. Основные способы вычисления углового ускорения при плоском движении
- •3.10. Теорема о конечном перемещении плоской фигуры
- •4.10. Мгновенный центр вращения. Центроиды
- •4. Вращение твердого тела вокруг неподвижной точки. Общий случай движения тела
- •4.1. Углы эйлера. Уравнения вращения твердого тела вокруг неподвижной точки
- •4.2. Теорема о конечном перемещении твердого тела, имеющего одну неподвижную точку
- •4.3. Мгновенная ось вращения. Аксоиды
- •4.4. Угловая скорость и угловое ускорение при вращении тела вокруг неподвижной точки
- •4.5. Скорости точек тела при вращательном движении вокруг неподвижной точки
- •4.6. Ускорения точек тела при вращении вокруг неподвижной точки
- •4.7. Вычисление углового ускорения
- •4.8. Общий случай движения свободного твердого тела Разложение движения свободного твердого тела на поступательное и вращательное
- •Уравнения движения свободного твердого тела
- •Скорости и ускорения точек свободного твердого тела в общем случае
- •5. Сложное движение точки в общем случае
- •5.1. Абсолютная и относительная производные от вектора. Формула бура
- •5.2. Сложение скоростей
- •5.3. Сложение ускорений точки в общем случае переносного движения
- •5.4. Ускорение кориолиса
- •6. Сложение движений твердого тела
- •6.1. Сложение поступательных движений твердого тела
- •6.2. Сложение вращательных движений твердого тела Сложение вращений вокруг пересекающихся осей
- •Сложение вращений вокруг параллельных осей
- •6.3. Сложение поступательного и вращательного движений твердого тела
- •Скорость поступательного движения перпендикулярна оси относительного вращения
- •В Рис. 80 Рис. 80 интовое движение
- •Общий случай
- •6.4. Статические аналогии в кинематике
- •Заключение
- •Библиографический список
- •Оглавление
- •Часть 2
- •394026 Воронеж, Московский просп., 14
5.2. Сложение скоростей
Е
Рис. 65
Движение
подвижной системы осей координат
относительно неподвижной можно
охарактеризовать скоростью ее
поступательного движения
,
например вместе с точкой
и вектором угловой скорости
ее вращения вокруг
.
Пусть точка
движется относительно подвижной системы
координат. Получим теорему сложения
скоростей. Для этого проведем векторы
и
,
характеризующие положение точки
относительно неподвижной и подвижной
систем осей координат, и вектор
точки
.
Для любого момента времени
. (127)
Продифференцируем по времени это векторное тождество, учитывая изменения векторов относительно неподвижных осей координат, т. е. вычислим полные производные. Получим
.
По
определению,
является абсолютной скоростью точки
,
– абсолютной скоростью точки
.
Для вычисления
применим формулу Бура. Имеем
.
Относительная
производная
является относительной скоростью точки
по отношению к подвижной системе отсчета,
а
– угловая скорость вращения подвижной
системы отсчета и, следовательно,
радиуса-вектора
,
если бы он в рассматриваемый момент
времени был скреплен с подвижной системой
осей координат. Таким образом, из (127)
получаем
. (128)
Скорость
является скоростью точки свободного твердого тела, скрепленного с подвижной системой координат, с которой в данный момент совпадает точка в движении тела относительно неподвижной системы осей координат. Это есть переносная скорость точки . Из (128) получаем следующую теорему сложения скоростей для точки:
. (129)
т.е. скорость абсолютного движения точки равна векторной сумме переносной и относительной скоростей.
5.3. Сложение ускорений точки в общем случае переносного движения
Абсолютное ускорение точки определим вычислением полной производной по времени от абсолютной скорости (128). Имеем
.
Для полных производных от векторов и , применим формулу Бура. Получим
,
.
Учитывая, что
,
,
,
,
получим для абсолютного ускорения
. (130)
В
этой формуле первые три слагаемых
составляют ускорение точки свободного
твердого тела в общем случае его движения
вместе с подвижной системой осей
координат относительно неподвижной.
Первое слагаемое
– ускорение точки
,
и
– соответственно вращательное и
осестремительное ускорения точки
,
если бы она двигалась только вместе с
подвижной системой осей координат, не
имея в рассматриваемый момент времени
относительного движения. После этого
(130) примет вид
, (131)
где
. (132)
Ускорение
называется ускорением
Кориолиса.
Иногда его также называют добавочным
(или поворотным)
ускорением.
Формула (131) выражает теорему сложения ускорений точки, или кинематическую теорему Кориолиса: абсолютное ускорение точки является векторной суммой трех ускорений – переносного, относительного и Кориолиса.
Переносное ускорение рассматривалось при изучении движения свободного твердого тела. Относительное ускорение изучалось в кинематике точки. Его можно выразить в двух формах в зависимости от способа задания относительного движения. При координатном способе задания в декартовых координатах
,
где – координаты движущейся точки относительно подвижной системы осей координат; – единичные векторы этих осей. При естественном способе задания движения
,
,
,
где
– расстояние от начала отсчета до точки
по траектории относительного движения;
– радиус кривизны этой траектории. В
частном случае, когда переносное движение
есть вращение вокруг неподвижной оси,
переносное ускорение
,
где касательное переносное ускорение
,
причем – кратчайшее расстояние от движущейся точки до оси вращения. Нормальное переносное ускорение
.
Абсолютное ускорение в этом случае
. (133)