Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебное пособие 700309.doc
Скачиваний:
20
Добавлен:
01.05.2022
Размер:
2.4 Mб
Скачать

7.3.5.Анализ в частотной области

Анализ в частотной области выполняется по отношению к линеа­ризованным моделям объектов. Для линейных СОДУ справедливо применение для алгебраизации дифференциальных уравнений преобразования Фурье, в котором оператор d/dt заменяется на оператор . Характерной особенностью получающейся СЛАУ является комплексный характер матрицы коэффициентов, что в некоторой степени усложняет процедуру решения, но не создает принципиальных трудностей. При решении задают ряд частот ωk. Для каждой частоты решают СЛАУ и определяют действительные и мнимые части искомых фазовых переменных. По ним определяют амплитуду и фазовый угол каждой спектральной составляющей, что и позволяет построить амплитудно-частотные, фазочастотные характеристики, найти собственные частоты колебательной системы и т.п.

7.3.6.Многовариантный анализ

Одновариантный анализ позволяет получить информацию о состоянии и поведении проектируемого объекта в одной точке пространства внутренних X и внешних Q параметров. Очевидно, что для оценки свойств проектируемого объекта этого недостаточно. Нужно выполнять многовариантный анализ, т.е. исследовать поведение объекта, в ряде точек упомянутого пространства, которое для краткости будем далее называть пространством аргументов.

Чаще всего многовариантный анализ в САПР выполняется в интерактивном режиме, когда разработчик неоднократно меняет в математической модели те или иные параметры из множеств X и Q, выполняет одновариантный анализ и фиксирует полученные значения выходных параметров. Подобный многовариантный анализ позволяет оценить области работоспособности, степень выполнения условий работоспособности, а следовательно, степень выполнения технического задания (ТЗ) на проектирование, разумность принимаемых промежуточных решений по изменению проекта и т.п.

Примечание. Областью работоспособности называют область в пространстве аргументов, в пределах которой выполняются все заданные условия работоспособности, т.е. значения всех выходных параметров находятся в допустимых по ТЗ пределах.

Cреди процедур многовариантного анализа можно выделить типовые, выполняемые по заранее составленным программам. К таким процедурам относятся анализ чувствительности и статистический анализ.

Наиболее просто анализ чувствительности реализуется путем численного дифференцирования. Пусть анализ проводится в некоторой точке Xном пространства аргументов, в которой предварительно проведен одновариантный анализ и найдены значения выходных параметров yjном. Выделяется N параметров-аргументов xi (из числа элементов векторов X и Q), влияние которых на выходные параметры подлежит оценить, поочередно каждый из них получает приращение Δxi, выполняется одновариантный анализ, фиксируются значения выходных параметров yj и подсчитывают значения абсолютных

и относительных коэффициентов чувствительности

Такой метод численного дифференцирования называют методом приращений. Для анализа чувствительности, согласно методу приращений, требуется выполнить N+1 раз одновариантный анализ. Результат его применения - матрицы абсолютной и относительной чувствительности, элементами которых являются коэффициенты Aij и Bij.

Примечание. Анализ чувствительности - это расчет векторов градиентов выходных параметров, который вхо­дит составной частью в программы параметрической оптимизации, использующие градиентные методы.

Ц

Рисунок 7.7 – Иллюстрация определения процента выпуска негодных изделий

ель статистического анализа оценка законов распределения выходных параметров и (или) числовых характеристик этих распределений. Случайный характер величин yi обусловлен случайным характером параметров элементов xi, поэтому исходными данными для статистического анализа являются сведения о законах распределения xi. В соответствии с результатами статистического анализа прогнозируют такой важный производственный показатель, как процент бракованных изделий в готовой продукции (рис. 7.7). На рисунке представлена рассчитанная плотность Р распределения выходного параметра yj, имеющего условие работо-способности yj < Tj, затемнен-ный участок характеризует долю изделий, не удовлетворяющих условию работоспособности параметра yj.

В САПР статистический анализ осуществляется численным методом - методом Монте-Карло (статистических испытаний). В соответствии с этим методом выполняются N статистических испытаний, каждое статистическое испытание представляет собой одно- вариантный анализ, выполняемый при случайных значениях параметров-аргументов. Эти случайные значения выбирают в соответствии с заданными законами распределения аргументов х. Полученные в каждом испытании значения выходных параметров накаплива­ют, после N испытаний обрабатывают, что дает следующие результаты:

  • гистограммы выходных параметров;

  • оценки математических ожиданий и дисперсий выходных параметров:

  • оценки коэффициентов корреляции и регрессии между избранными выходными и внутренними параметрами, которые, в частности, можно использовать для оценки коэффициентов чувствительности.

Статистический анализ, выполняемый в соответствии с методом Монте-Карло, - трудоемкая процедура, поскольку число испытаний N приходится выбирать довольно большим, чтобы достичь приемлемой точности анализа. Другая причина, затрудняющая применение метода Монте-Карло, - трудности в получении достоверной исходной информации о законах распределения параметров-ар­гументов

Более типична ситуация, когда законы распределения xi неизвестны, но с большой долей уверенности можно указать предельно допустимые отклонения Δxi параметров xi от номинальных значения xiном (такие отклонения часто указываются в паспортных данных на комплектующие детали). В таких случаях более реалистично применять метод анализа на наихудший случай. Согласно этому методу, сначала выполняют анализ чувствительности с целью определения знаков коэффициентов чувствительности. Далее осуществляют m раз одновариантный анализ, где m -число выходных параметров. В каждом варианте задают значения аргументов, наиболее неблагоприятные для выполнения условия работоспособности очередного выходного параметра . Так, если yj<Tj и коэффициент чувствительности положительный (т.е. sign(Bji)=0) или yj>Tj и sign(Bji)=1, то xiном xi = xiномxi иначе xi = xiном – Δxi.

Однако следует заметить, что, проводя анализ на наихудший случай, можно получить завышенные значения разброса выходных параметров, и если добиваться выполнения условий работоспособ­ности в наихудших случаях, то это часто ведет к неоправданному увеличению стоимости, габаритных размеров, массы и других показателей проектируемых конструкций, хотя и гарантирует с запасом вы­полнение условий работоспособности.