
- •Введение
- •1. Структура и классификация сапр
- •1.1.Разновидности сапр
- •1.2.Функции, характеристики и примеры cae/cad/cam-систем
- •1.3.Понятие о cals-технологии
- •1.4.Комплексные автоматизированные системы
- •1.5.Системы управления в составе комплексных автоматизированных систем
- •1.6.Автоматизированные системы делопроизводства (асд)
- •2.Системы автоматизированного проектирования и их место среди других автоматизированных систем
- •3.Системные среды и программно-методические комплексы сапр
- •3.1.Функции сетевого программного обеспечения
- •3.1.1.Системы распределенных вычислений
- •3.1.2.Прикладные протоколы и телекоммуникационные информационные услуги
- •3.1.3.Информационная безопасность
- •3.2.Назначение и состав системных сред сапр
- •3.2.1.Системные среды автоматизированных систем
- •3.2.2.Подходы к интеграции по в сапр
- •3.2.3.Технологии интеграции по типа dde и ole
- •3.2.4.Управление данными в сапр
- •3.2.5.Варианты управления данными в сетях ас
- •3.2.6.Интеллектуальные серверы бд
- •3.2.7.Распределенные базы данных (рбд)
- •3.2.8.Программные средства управления проектированием в сапр
- •3.2.9.Примеры подсистем управления данными и проектированием
- •3.3.Инструментальные среды разработки программного обеспечения
- •3.3.1.Среды быстрой разработки приложений
- •3.3.2.Компонентно-ориентированные технологии
- •3.3.3.Пример реализации компонентно-ориентированной технологии в сапр
- •4.Системный подход к проектированию
- •4.1.Понятие инженерного проектирования
- •4.2.Принципы системного подхода
- •4.3.Основные понятия системотехники
- •5.Структура процесса проектирования
- •5.1.Иерархическая структура проектных спецификаций и иерархические уровни проектирования.
- •5.2.Стадии проектирования
- •5.3.Содержание технических заданий на проектирование
- •5.4.Классификация моделей и параметров, используемых при автоматизированном проектировании
- •5.5.Типовые проектные процедуры
- •6.Виды обеспечения и требования к их компонентам (гост 23501.101-87)
- •6.1.Программное обеспечение сапр
- •6.2.Информационное обеспечение сапр
- •6.3.Методическое обеспечение сапр
- •6.4.Математическое обеспечение сапр
- •6.5.Лингвистическое обеспечение сапр
- •6.6.Техническое обеспечение сапр
- •6.7.Организационное обеспечение сапр
- •7.Математическое моделирование автоматизированных систем
- •7.1.Математическое обеспечение анализа проектных решений
- •7.1.1.Математический аппарат в моделях разных иерархических уровней
- •7.1.2.Требования к математическим моделям и численным методам в сапр.
- •7.1.3.Место процедур формирования моделей в маршрутах проектирования
- •7.2.Математические модели в процедурах анализа на макроуровне
- •7.2.1.Исходные уравнения моделей
- •7.2.2.Примеры компонентных и топологических уравнений
- •7.2.3.Представление топологических уравнений
- •7.2.4.Особенности эквивалентных схем механических объектов.
- •7.2.5.Характеристика методов формирования ммс
- •7.2.6.Узловой метод
- •7.3.Методы и алгоритмы анализа на макроуровне
- •7.3.1.Выбор методов анализа во временной области
- •7.3.2.Алгоритм численного интегрирования соду
- •7.3.3.Методы решения систем нелинейных алгебраических уравнений
- •7.3.4.Методы решения систем линейных алгебраических уравнений
- •7.3.5.Анализ в частотной области
- •7.3.6.Многовариантный анализ
- •7.3.7.Организация вычислительного процесса в универсальных программах анализа на макроуровне.
- •7.4.Имитационное моделирование
- •7.4.1.Имитационное моделирование систем массового обслуживания
- •7.4.2.Событийный метод моделирования
- •7.4.3.Краткое описание языка срss
- •7.4.4.Сети Петри
- •7.4.5.Анализ сетей Петри
- •7.5.Математическое обеспечение синтеза проектных решений
- •7.5.1.Постановка задач параметрического синтеза
- •7.5.1.1.Место процедур синтеза в проектировании
- •7.5.1.2.Критерии оптимальности
- •7.5.1.3.Задачи оптимизации с учетом допусков
- •7.5.2.Обзор методов оптимизации
- •7.5.2.1.Классификация методов математического программирования
- •7.5.2.2.Методы одномерной оптимизации
- •7.5.2.3.Методы безусловной оптимизации
- •7.5.2.4.Необходимые условия экстремума
- •7.5.2.5.Методы поиска условных экстремумов.
- •7.5.3.Постановка задач структурного синтеза
- •7.5.3.1.Процедуры синтеза проектных решений
- •7.5.3.2.Задача принятия решений
- •7.5.3.3.Представление множества альтернатив
- •7.5.3.4.Морфологические таблицы
- •7.5.3.5.Альтернативные графы
- •7.5.3.6.Исчисления
- •7.5.4.Методы структурного синтеза в сапр
- •7.5.4.1.Системы искусственного интеллекта.
- •7.5.4.2.Дискретное математическое программирование
- •7.5.4.3.Элементы теории сложности
- •7.5.4.4.Эволюционные методы.
- •7.5.4.5.Постановка задачи поиска оптимальных решений с помощью генетических алгоритмов
- •7.5.4.6.Простой генетический алгоритм
- •7.5.4.7.Разновидности генетических операторов
- •7.5.4.8.Генетический метод комбинирования эвристик
- •8.Эффективность сапр
- •9.Понятие об открытых системах
- •9.1.История развития открытых систем
- •9.2.Существующие определения открытых систем и терминология
- •9.3.Различные подходы к понятию "открытые системы"
- •10.Технологии и стандарты информационной поддержки жизненного цикла изделий
- •Заключение
- •Библиографический список
- •Оглавление
- •394026 Воронеж, Московский просп., 14
7.3.4.Методы решения систем линейных алгебраических уравнений
В программах анализа в САПР для решения
СЛАУ чаще всего применяют метод Гаусса
или его разновидности. Метод Гаусса -
метод последовательного исключения
неизвестных из системы уравнений. При
исключении k-й неизвестной
из системы уравнений
-
AX = B
7.32
все коэффициенты aij при i>к и j>k пересчитывают по формуле
-
7.33
Исключение п-1 неизвестных, где п - порядок системы (7.32), называют прямым ходом, в процессе которого матрица коэффициентов приобретает треугольный вид. При обратном ходе последовательно вычисляют неизвестные, начиная с xn.
В общем случае число арифметических
операций для решения (7.32) по Гауссу
пропорционально
.
Это приводит к значительным затратам
машинного времени, поскольку СЛАУ
решается многократно в процессе
одновариантного анализа, и существенно
ограничивает сложность анализируемых
объектов.
Заметно повысить вычислительную эффективность анализа можно, если использовать характерное практически для всех приложений свойство высокой разреженности матрицы А в модели (7.32).
Матрицу называют разреженной, если
большинство ее элементов равно нулю.
Эффективность обработки разреженных
матриц велика потому, что, во-первых,
пересчет по формуле (7.33) не требуется,
если хотя бы один из элементов aik
или akj
оказывается нулевым, во-вторых, не
требуются затраты памяти для хранения
нулевых элементов. Хотя алгоритмы
обработки разреженных матриц более
сложны, но в результате удается получить
затраты машинного времени, близкие к
линейным, например, затраты оказываются
пропорциональными
.
При использовании методов разреженных матриц нужно учитывать зависимость вычислительной эффективности от того, как представлена матрица коэффициентов А, точнее от того, в каком порядке записаны ее строки и столбцы.
Для пояснения этой зависимости рассмотрим два варианта представления одной и той же СЛАУ В первом случае система уравнений имеет вид
При прямом ходе в соответствии с формулой (7.33) все элементы матрицы, которые первоначально были нулевыми, становятся ненулевыми, а матрица оказывается полностью насыщенной. Элементы, становящиеся ненулевыми в процессе гауссовых исключений, называют вторичными ненулями.
Таблица 7.3
Вторичные ненули в таблице 7.3 отмечены точкой. Во втором случае меняются местами первое и пятое уравнения. Матрицы коэффициентов имеют вид таблиц 7.3 и 7.4, где ненулевые элементы представлены знаком +. Теперь вторичные ненули не появляются, матрица остается разреженной, высокая вычислительная эффективность сохраняется.
Таблица 7.4
Таким образом, методы разреженных матриц должны включать в себя способы оптимального упорядочения строк и столбцов матриц. Используют несколько критериев оптимальности упорядочения. Простейшим из них является критерий расположения строк в порядке увеличения числа первичных ненулей, более сложные критерии учитывают не только первичные ненули, но и появляющиеся вторичные ненули.
Методом разреженных матриц называют метод решения СЛАУ на основе метода Гаусса с учетом разреженности (первичной и вторичной) матрицы коэффициентов.
Метод разреженных матриц можно реализовать путем интерпретации и компиляции. В обоих случаях создаются массивы ненулевых коэффициентов матрицы (с учетом вторичных ненулей) и массивы координат этих ненулевых элементов.
При этом выигрыш в затратах памяти довольно значителен. Так, при матрице умеренного размера 200x200 без учета разреженности потребуется 320 кбайт Если же взять характерное значение 9 для среднего числа ненулей в одной строке, то для коэффициентов и указателей координат потребуется не более 28 кбайт.
В случае интерпретации моделирующая программа для каждой операции по (7.33) при aik ≠ 0 и akj ≠ 0 находит, используя указатели, нужные коэффициенты и выполняет арифметические операции по (7.33). Поскольку СЛАУ в процессе анализа решается многократно, то и операции поиска нужных коэффициентов также повторяются многократно, на что естественно тратится машинное время.
Способ компиляции более экономичен по затратам времени, но уступает способу интерпретации по затратам памяти. При компиляции поиск нужных для (7.33) коэффициентов выполняется однократно перед численным решением задачи. Вместо непосредственного выполнения арифметических операций для каждой из них компилируется команда с найденными адресами ненулевых коэффициентов. Такие команды образуют рабочую программу решения СЛАУ, которая и будет решаться многократно. Очевидно, что теперь в рабочей программе будет выполняться минимально необходимое число арифметических операций.